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ABSTRACT: It is now well established from autopsy studies and
adverse effect monitoring that the COVID-19 vaccines can cause death.
The vaccine-dose fatality rate (vDFR), which is the ratio of vaccine-
induced deaths to vaccine doses delivered in a population, has recently
been measured by us to be as large as 1 % in India and when “vaccine
equity” campaigns were applied in high-poverty states of the USA, and
to be 0.05 % in Australia, with data that is not discriminated by age
group. Here, we provide the first empirical evaluations of age-stratified
vDFRs, using national all-cause mortality and vaccine rollout data, for
Israel and Australia. We find that the vDFR increases dramatically with
age for older adults, being exponential with a doubling time of
approximately 5.2 + 0.4 years. As a result the vDFR is an order of
magnitude greater in the most elderly population than the all-population
value, reaching 0.6 % for the 80+ years age group in Israel and 1 % for
the 85+ years age group in Australia, compared to < 0.01 % for young
adults (< 45 year olds). Our results imply that it was reckless to prioritise

vaccinating those deemed to be in greatest need of protection.

It is well established that the COVID-19 vaccines can cause death, as seen from:

e detailed autopsy studies (Choi et al., 2021; Schneider et al., 2021; Sessa et al.,
2021; Gill et al., 2022; Morz, 2022; Schwab et al., 2022; Suzuki et al., 2022; Tan
et al., 2022; Yoshimura et al., 2022; Onishi et al., 2023),

e adverse effect monitoring (Hickey and Rancourt, 2022),

e arecent survey study (Skidmore, 2023),

e studies of vaccine-induced pathologies (e.g., Goldman et al., 2021; Kuvandik et
al., 2021; Turni and Lefringhausen, 2022; Edmonds et al., 2023; Wong et al.,
2023), and

e more than 1,250 peer-reviewed publications about COVID-19 vaccine adverse
effects (React 19, 2022).



In particular, a study of the Vaccine Adverse Event Reporting System (VAERS) data for
the USA showed that the COVID-19 injections can be understood as individual
challenges to the body, and that “toxicity by dose” is a good first-order model of the
phenomenon for the adverse effect of death (Hickey and Rancourt, 2022). An
exponential increase of lethality with median age of those dying following injection was

observed (Hickey and Rancourt, 2022).

There is also the known vaccine injury compensation programmes of states worldwide,
which include death resulting from the COVID-19 vaccines (Mungwira et al. 2020; Wood
et al., 2020; Crum et al., 2021; Kamin-Friedman and Davidovitch, 2021). Japan, Canada
and the UK have granted compensation for COVID-19 vaccine induced deaths (The
Japan Times, 26 July 2022; Corbett, 6 September 2022; Wise, 2022).

We are pursuing a research program to quantify the vaccine-dose fatality rate (VDFR),
which is the ratio of vaccine-induced deaths to vaccine doses delivered in a population.
We do this at the population level of states, using epidemiological methods applied to
all-cause mortality (ACM) and vaccine rollout data, by time (day, week, month), by
jurisdiction and by age group (Rancourt et al., 2022a; Rancourt et al., 2022b; Rancourt,
2022).

Here we report our first age-stratification results.

We recently demonstrated that the COVID-19 vaccine rollouts caused significant

increases in mortality in India, the USA, Australia, and Canada (see Rancourt et al.,

2022a; and references therein).

Rancourt showed that the vaccine rollout in India (350 million doses) synchronously

caused 3.7 million excess deaths, corresponding to a vDFR of 1 %; and provided
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comprehensive reasons for concluding a causal relation to the vaccine rollout rather

than coincidence involving other causes (Rancourt, 2022).

Our work on the Australian data established a non-age-stratified (all-population) mean
VDFR of 0.05 %, in a phenomenon of step-wise increase in mortality synchronous with
the vaccine rollout, which was also present in each of the eight states of Australia and in

each of the age groups of the most elderly residents (Rancourt et al., 2022a).

Such determinations of vDFR are possible — despite the inherent difficulty in assigning
cause to excess mortality, especially despite the difficulty in discerning excess mortality
caused by the imposed pandemic-response conditions (or “COVID-19 conditions”) — in
two kinds of circumstances:
I. Jurisdictions in which there is essentially no measurable excess integrated
ACM in the pre-vaccination period of the declared pandemic (typically 11
March 2020 to 1 January 2021),* followed by a large and sudden step-wise
increase in ACM by time, synchronous with the vaccine rollout in the
jurisdiction, and sustained through multiple-dose cycles of vaccination (e.g.,
Australia, India, Israel).
il. Cases in which a specific vaccine rollout (e.qg., first booster in Australia,
“vaccine equity” campaign in the USA, first-dose in Ontario) is synchronous
with an anomalous peak in ACM, which is not confounded by occurring at a

seasonal peak position inferred from the historic trend.

In all these cases, which we have studied, the vaccine rollouts occur at significantly
different times, for different jurisdictions and age groups, yet are always synchronous
with the step-wise increases and anomalous peaks in ACM. In this regard, the graphs in
our most recent paper and its appendices are compelling (Rancourt et al., 2022a; their
figures 1A through 1D, 2, 4, 6A through 6D, 7, 8 and 9; their appendix figures A1-F1

(9 panels) and A2-F1), as are the graphs for India (Rancourt, 2022).

! The World Health Organization (WHO) declared a pandemic on 11 March 2020 (the “declared
pandemic”). Vaccine rollouts typically did not start until late December 2020 and early January 2021,
although several national jurisdictions had significantly later starts.



In addition, the all-population vDFRs, for individual states and for individual anomalous
peaks in ACM, are all comparable in magnitude, in the range of approximately 0.03 % -
1 % (Rancourt et al., 2022a ; Rancourt et al., 2022b ; Rancourt, 2022).

The robust criteria described by loannidis (2016) for proving causality are amply
satisfied:

e Experiment: The same phenomenon is independently observed in distinct
jurisdictions, for distinct age groups, and at different times, which constitutes
ample verification in independent real-world large-scale experiments.

e Temporality: The many step-wise increases and anomalous peaks in ACM are
synchronous with vaccine rollouts, and the peaks in ACM have the same shapes
and widths as the synchronous peaks in vaccine dose delivery by time; including
in jurisdictions in which excess integrated mortality did not occur until vaccination
was implemented after approximately one year of the declared pandemic.

e Consistency: The phenomenon is qualitatively the same and of comparable

magnitude in each occasion in which it is observed.

Here, we perform the age-stratification analysis for Australia, and we add Israel.

Our method for quantification of vDFR by age group (or all-population) is as follows
(Rancourt et al., 2022a):
I. Plot the ACM by time (day, week, month) for the age group (or all-population)
over a large time scale, including the years prior to the declared pandemic.
il. Identify the date (day, week, month) of the start of the vaccine rollout (first
dose rollout) for the age group (or all-population).
iii. Note, for consistency, that the ACM undergoes a step-wise increase to larger

values at the date of the start of the vaccine rollout.



Vi.

Vii.

viii.

Xi.

Xii.

Integrate (add) ACM from the start of the vaccine rollout to the end of
available data or end of vaccinations (all doses), whichever comes first. This
is the basic integration time window used in the calculation, start to end dates.
Apply this window and this integration over successive and non-overlapping
equal-duration periods, moving as far back as the data permits.

Plot the resulting integration values versus time, and note, for consistency,
that the value has an upward jog, well discerned from the historic trend or
values, for the vaccination period.

Extrapolate the historic trend of integrated values into the vaccination period.
The difference between the measured and extrapolated (historic trend
predicted) integrated values of ACM in the vaccination period is the excess
mortality associated with the vaccination period.

The extrapolation, in practice, is achieved by fitting a straight line to chosen
pre-vaccination-period integration points.

If too few points are available for the extrapolation, giving too large an
uncertainty in the fitted slope, then impose a slope of zero, which amounts to
using an average of recent values. In some cases, even a single point
(usually the point for the immediately preceding integration window) can be
used.

The error in the extrapolated value is overwhelmingly the dominant source of
error in the calculated excess mortality. Estimate the “accuracy error” in the
extrapolated value as the mean deviation of the absolute value difference with
the fitted line (mean of the absolute values of the residuals) for the chosen
points of the fit. This error is a measure of the integration-period variations
from all causes over a near region having an assumed linear trend.

Apply the same integration window (start to end dates during vaccination) to
count all vaccine doses administered in that time.

Define vDFR = (vaccination-period excess mortality) / (vaccine doses
administered in the same vaccination period). Calculate the uncertainty in

VDFR using the estimated error in vaccination-period excess mortality.
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The same method can be adapted to any region of interest of sub-annual duration, by
translating the window of integration (of the region of interest) backwards by increments

of one year.

The above-described method is robust and ideally adapted to the nature of ACM data.
Integrated ACM has a small statistical error. The large time-wise integration window
removes difficulties arising from intrinsic seasonal variations. The historic trend is
analysed without introducing any model assumptions or uncertainties beyond assuming
that the near trend can be modelled by a straight line, where justified by the data itself.
Such an analysis, for example, takes into account year to year changes in age-group
cohort size arising from the age structure of the population. The only presumption is that
a locally linear near trend for the unperturbed (ACM-wise unperturbed) population is

realistic.

The calculation of the excess ACM by age group and for all-population for Australia is
illustrated in Figure 1 (age groups as indicated in the figure), as follows. We used the
three points sequentially preceding the vaccination period and imposed a horizontal line

(zero slope of the fitted straight line), throughout (Figure 1).

The details such as sources of official data, start and end points of integration, and
methods for matching ACM and vaccine rollout data by age group, are provided in

Appendix 1.

The integration period for Australia was fine-tuned and updated ACM data was
implemented (see Appendix 1), compared to our previous analysis (Rancourt et al.,

2022a), and the results are essentially identical.



Deaths/w

Deaths/w

4,200

4,000

3,800

3,600

w
I
o
o

3,200

3,000

2,800

2,600

1,900
1,800
1,700
1,600
1,500
1,400
1,300
1,200
1,100

1,000

AUSTRALIA
All-population

=_

AUSTRALIA

)
I

285K

280K

275K

270K

265K

260K

255K

250K

245K

240K

115K

110K

105K

100K

Deaths per 80-week period

Deaths per 80-week period



1,100

1,000

900

Deaths/w

800

700

650

600

550

500

Deaths/w

45

(=]

400

350

AUSTRALIA
75-84 years

2016 2017 2018 2019 2020 2021 2022

AUSTRALIA
65-74 years

ﬂ i Mw!“’ldf

2016 2017 2018 2019 2020 2021 2022

76K

74K

72K

70K

68K

66K

64K

62K

60K

45K

44K

43K

42K

41K

40K

39K

38K

37K

Deaths per 80-week period

Deaths per 80-week period



10

500
480
460

440

Deaths/w
I
]
(=]

400

380

360

340

190

180

170

160

150

Deaths/w

140

130

120

110

AUSTRALIA
45-64 years
|
2016 2017 2018

——

2016

2017

lilw ll! l il i“

2018

WL
il

\

2019 2020

\I

2019 2020

U

2021

AUSTRALIA

||

2022

0-44 years

2021

AL I

2022

34,000

33,500

33,000

32,500

32,000

12,500

12,400

12,300

12,200

12,100

12,000

Figure 1. Australia, 2015-2022, by age group as indicated. ACM by week (light blue); integrated

Deaths per 80-week period

Deaths per 80-week period

ACM by 80-week vaccination-period integration window (dark blue, points), the last point being for

the actual vaccination period itself; extrapolation line used to calculate the excess ACM in the

10



11

vaccination period (orange). See the text for a description of the method, and Appendix 1 for

details.

The youngest age group for Australia (0-44 years, Figure 1) shows our chosen
extrapolation method not to be optimally suited to the ACM trend, however, in this age
group the ACM is small, so this makes little difference. Furthermore, our method here
automatically ensures that this difficulty is reflected in a larger estimated error, which is

propagated to the calculated excess ACM.

We do the same for Israel. The calculation of the excess ACM by age group and for
all-population for Israel is illustrated in Figure 2 (age groups as indicated in the figure),
as follows. Here we chose to use different sets of points to use in the extrapolation, as
described in Appendix 1, and as can be surmised from Figure 2 itself.

In this way, we account for the different historical trends in ACM that occur in the
different age groups for Israel, and we avoid the point immediately preceding the
vaccination period where it appears to include a significant excess mortality in the

pre-vaccination period of the declared pandemic.
The details such as sources of official data, start and end points of integration, and
methods for matching ACM and vaccine rollout data by age group, are provided in

Appendix 1.

In terms of specific features in ACM by time, examples of synchronicity between ACM
peaks and vaccine dose rollouts for Israel are shown in Appendix 2.

11
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Figure 2: Israel, 2000-2022, by age group as indicated; and on expanded time axis 2015-2022 for
all-population, as indicated. ACM by week (light blue); integrated ACM by 97-week vaccination-
period integration window (dark blue, points), the last point being for the actual vaccination period
itself; extrapolation line used to calculate the excess ACM in the vaccination period (orange). See

the text for a description of the method, and Appendix 1 for details.
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For Israel (Figure 2), although there is necessarily a degree of arbitrariness in the
choice of the points to include in the linear regression, this does not significantly affect
the results since:

I. The effect (age-stratified excess ACM in the vaccination period) is large
enough not to be sensitive to the said arbitrariness.

il. The integrated ACM for the vaccination period is generally significantly and
anomalously greater than its value for the immediately preceding integration
period.

iii. Essentially the same result (age-stratified excess ACM in the vaccination
period) occurs if we use the simplest possible method of taking the
extrapolated vaccination-period ACM to be equal to the value for the
immediately preceding point, which amounts to removing mortality occurring
pre-vaccination in the pandemic period while assuming a locally constant
trend in integrated ACM.

Tables 1 and 2 give the resulting age-stratified (and all-population) vDFR values for

Australia and Israel, respectively. See Appendix 1 for details.
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Table 1: AUSTRALIA

Age group Excess ACM in the Vaccine doses in the vDFR

(years) vaccination period (x) | vaccination period (%) (1)

All ages 32,610(890) 63,342,668 0.0515%(0.0014%)

85+ 16,120(970) 1,734,308 0.9309%(0.056%)

75-84 11,120(170) 4,210,402 0.264%(0.004%)

65-74 4,180(250) 6,994,831 0.0597%(0.0036%)

45-64 1,400(140) 16,791,268 0.00833%(0.00086%)

0-44 -210(190) 28,706,437 -0.00073%(0.00065%)
Table 2: ISRAEL

Age group Excess ACM in the Vaccine doses in the vDFR

(years) vaccination period (x) | vaccination period (%) ()

All ages 9630(550) 18,251,720 0.0527%(0.0030%)

80+ 5220(330) 954,235 0.547%(0.035%)

70-79 4100(110) 1,699,838 0.2410%(0.0065%)

60-69 800(54) 2,230,502 0.0359%(0.0024%)

50-59 283(42) 2,264,319 0.0125%(0.0019%)

40-49 42(8) 2,740,576 0.00159%(0.0003%)

30-39 148(19) 2,825,151 0.0052%(0.0007%)

20-29 128(26) 2,872,200 0.0045%(0.0009%)

0-19 -13(32) 2,664,899 —0.0005%(0.0012%)

The results from Tables 1 and 2 are plotted in Figure 3, with exponential fits, both on

linear and logarithmic scales for vDFR.
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Figure 3: vDFR, which is the ratio of vaccine-induced deaths to vaccine doses delivered in the
population of the specified age group, versus age for Israel (orange) and Australia (blue), on full
(top) and expanded (middle) linear scales, and with semi-log scale (bottom). Horizontal bands are
for the all-population values of vDFR. The age (X-axis value, years) assigned to a given age group

is the starting age of the window of ages for the age group.

In Figure 3, the age (X-axis value, in years) assigned to a given age group is the

starting age of the window of ages for the age group. This particular choice makes little
difference because translating the x values by any constant number, for example, does
not affect the doubling time obtained by fitting an exponential function, and only slightly

affects the y intercept at x = 0 (the prefactor in the exponential).

The fitted exponentials (Figure 3) are of the form:
y = Aexp(x/k)
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or
VDFR = A exp(Age/k)

where A is the prefactor.

The doubling time (T2) is related to k as:
T2 = klIn(2).

The fitted values of k (and T2) are:

Fitted function: VvDFR = A exp( Age/k)

Country Number of k () (years) T2 (%) (years)
points in fit
AU 5 7.8(0.5) 5.4(0.3)
IL 8 7.1(0.7) 4.9(0.5)

This doubling time by age of approximately 5 years for risk of dying per injection of the
COVID-19 vaccines is approximately half of the doubling time by age of 10 years for risk
of dying per year of all causes in a modern human population, and of the main old-age
diseases cancer, pneumonia and heart disease (Strekler and Mildvan, 1960). This

implies a toxicity effect rather than simply inducing death by old age.

Furthermore, there is a non-exponential constant vDFR for young adults (vVDFR =
0.005 %, 20-40 years, Figure 3, Table 2). This suggests an accidental mechanism of
death with a constant probability for these ages. One might postulate, for example, that
VDFR is a product of a constant (age-independent) probability of accidental intra-
vascular injection and a constant probability of death given intra-vascular injection. One
might further postulate that one or both of these probabilities is larger in athletes with
highly developed vascular systems and rapid circulatory rates (Cadegiani, 2022; Klein
et al., 2022).

21




22

Our all-population value of vDFR of approximately 0.05 % (Figure 3, Tables 1 and 2)
implies that in the USA, following the administration of approximately 670 million
COVID-19 vaccine doses to date (669.60 million doses, up to 31 January 2023, Our
World in Data),? approximately 330,000 USA residents would have died from the
COVID-19 vaccines (1 in 1,000 on a population basis), assuming that elderly and
vulnerable individuals are not more abundant or more aggressively targeted than in
Australia or Israel. This number is comparable to the 278,000 fatalities found by
Skidmore (2023) in his survey study for the USA. Our number of 330,000 is probably an
underestimate, in light of the exponential dependence of vDFR with age that we have
demonstrated and the known exceptionally large pools of highly vulnerable residents in
the USA (Rancourt et al., 2022b).

Most importantly and concretely, our results establish a large VDFR in elderly people, as
large as the 1 % measured for India when frail elderly people and patients with
comorbidities were targeted (Rancourt, 2022), and when the same was presumably
done in the high-poverty states of the USA, under the banner of vaccine equity

programmes (Rancourt et al., 2022b).

The public health notion that elderly and vulnerable individuals must be prioritized for
COVID-19 vaccination assumes:

I. a constant age-independent vDFR

il. a small value of the vDFR optimistically estimated from managed trials,

funded by the pharmaceutical industry

Our research shows that both assumptions (i and ii) are false, and far from reality in the

field, on the scale of nations.

The said public health notion has always been baseless since it was not anchored in

any sufficient evaluation of age-stratified risk of fatality from the injection (e.g., Veronese

2 https://ourworldindata.org/grapher/cumulative-covid-vaccinations?country=~USA, consulted on
6 February 2023.
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et al., 2021; Abbatecola et al., 2022; Gao et al., 2022), and is now proven to be contrary
to reality. Prioritizing elderly people for vaccination, in the absence of relevant data, was
reckless. Norway may be the only jurisdiction that immediately and publicly recognized
a problem and changed its policy regarding vaccinating the most elderly and frail
(Reuters, 18 January 2021; Fortune, 15 January 2021).

Some readers will be tempted to compare our results (Figure 3) with published
age-stratified COVID-19 infection fatality rates (IFR) (e.g., COVID-19 Forecasting Team,
2022; Pezzullo et al., 2023). While in principle this is a correct approach of risk-benefit
analysis, we believe that the IFR studies are not reliable, for the following reasons:

I. The deaths in the numerator of IFR are “COVID-19 deaths”, and this cause of
death assignation is susceptible to bias and is highly uncertain (e.g., Rancourt
et al., 2022c; Rancourt et al., 2021).

. The number of infections, in the denominator of IFR, is reliant on molecular
antibody tests, which are not specific and have not been sufficiently validated
(e.g., Rancourt, 2021).

iii. If the IFR evaluations were valid, then it would be virtually impossible for
jurisdictions like India and Australia to have no detectable excess ACM in the
pre-vaccination period of the declared pandemic.

V. We do not detect any excess ACM that can be attributed to COVID-19 in the
jurisdictions that we have studied in detail (USA and all its states; Canada
and its provinces; France and its departments and regions; Australia and its

states).
The COVID-19 vaccines did not only not save lives but they are highly toxic.
On the global scale, given the 3.7 million fatalities in India alone, having vDFR =1 %
(Rancourt, 2022), and given the age-stratified vVDFR results presented in this work, it is

not unreasonable to assume an all-population global value of vDFR = 0.1 %. Based on

the global number of COVID-19 vaccine doses administered to date (13.25 billion
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doses, up to 24 January 2023, Our World in Data),® this would correspond to 13 million
deaths from the COVID-19 vaccines worldwide. By comparison, the official World
Health Organization (WHO) number of COVID-19 deaths to date is 6.8 million
(6,817,478 deaths, reported to WHO, as 3 February 2023),* which are not detected as
COVID-19 assignable deaths in ACM studies.

We are continuing our research on ACM, extending it to many national and sub-national
jurisdictions. We hope that the present report will help put an end to the misguided and

baseless public health policy that elderly people should be prioritized for vaccination.

(See Appendixes, below References)
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Appendix 1:
Data and Methods

Data

Table Al describes the data used in this work and the sources of the data.

Data Country Period Time unit Filters Source
. Age group’,
ACM Australia 2015-2022* | Week ABS, 2022
sex
Age group?,
ACM Israel 2000-2022** | Week CBS, 2022
sex
. _ . Age group®, | AG, 2022a
Vaccines Australia 2021-2023 Week
sex AG, 2022b
_ o , | Data Gov,
Vaccines Israel 2020-2022 Day Age group
2022
. . Age group”,
Population Australia 2021 Year ABS, 2021
sex

Table Al. Data retrieved. All-cause mortality (ACM), vaccine rollouts, population.

* At the date of access, data were available from week-1of 2015 (week finishing on January 4,
2015) to week-38 of 2022 (week finishing on September 25, 2022).

** At the date of access, data were available from week-1 of 2000 (week starting on January 3,
2000) to week-50 of 2022 (week starting on December 12, 2022).

* The reports of September 16, 2022 have been used in this work, reporting data as at
September 14, 2022.

™ At the date of access, data were available from Sunday December 20, 2020 to Tuesday
October 25, 2022.

g age groups: 0-44, 45-64, 65-74, 75-84, 85+

28 age groups: 0-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+
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% 19 age groups for vaccine doses 1 and 2: 5-11, 12-15, 16-19, 20-24, 25-29, 30-34, 35-39, 40-
44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-79, 80-84, 85-89, 90-94, 95+ (Excel file report,
AG 2022a) and 14 age groups for vaccine doses 3 and 4: 5-11, 12-15, 16-19, 20-24, 25-29, 30-
34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70+ (PDF file report, AG 2022b)

* 9 age groups: 0-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90+

® 18 age groups: 0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59,
60-64, 65-69, 70-74, 75-79, 80-84, 85+

In addition to the data retrieved as per Table Al, we also examined cumulative vaccine
dose by time data for Australia, as per our previous paper about Australia (Rancourt et
al., 2022), from https://www.covid1l9data.com.au/vaccines.

In all the calculations and illustrations, both all-cause mortality (ACM, mortality from all
causes of death) and numbers of vaccine doses administered are for the specific
jurisdiction and age group.

Vaccine data for Australia are given as cumulative data (AG, 2022a and AG, 2022b).
Vaccine data for Israel are given as incremental data (Data Gov, 2022).

In the vaccines data of Israel, when the number of doses administered in a day is
between 1 and 15, inclusively, the data shows “<15” (Data Gov, 2022). In order to have
a figure to work with, we replaced “<15” by 15, choosing the upper bound of this
unknown value. The net effect of this approximation is negligible.

For the vaccine data in Australia, doses 1 and doses 2 are given for 19 age groups (AG,
2022a), which cover the age groups of the ACM by age data (ABS, 2022). However, for
doses 3 and 4, 14 age groups are given (AG, 2022b), which do not match the same age
groups as for the ACM by age data (ABS, 2022). For this reason, we proceeded as
follows.

Figure Al is the figure from the Australian Government, on page 7 of their report (AG,
2022b):
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Number of people vaccinated by age

70+
65 - 69
60 - 64
55 - 59
50 - 54
45 - 49
40 - 44
35-39
30-34
25-29
20-24
16-19
12-15

=

500,000 1,000,000 1,500,000 2,000,000 2,500,000 3,000,000 3,500,000

m Received 4 doses mReceived 3 doses mReceived 2 doses mReceived 1 dose mNot vaccinated

Figure Al. Vaccinations by age from the Australian Government, report of September 16,
2022, page 7 (AG, 2022hb).

First, we estimate the number of doses 3+4 administered by age group from this figure
(Figure Al). This is done in Table A2.

Age group Measure (cm) Doses 3+4
70+ 8.40 2,896,551
65-69 3.23 1,113,793
60-64 3.51 1,210,344
55-59 3.41 1,175,862
50-54 3.53 1,217,241
45-49 3.25 1,120,689
40-44 3.25 1,120,689
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35-39 3.3 1,137,931
30-34 3.1 1,068,965
25-29 2.7 931,034
20-24 2.25 775,862
16-19 1.33 458,620

Table A2. Estimation of the number of doses 3+4 by age group from AG, 2022b.
Scale used = 1,000,000 people for 2.9 cm.

Next, we estimate the number of doses 3+4 for the missing age groups: the 70-74,
75-84 and 85+ age groups. We assume and use a simple proportion of the population of

those age groups (ABS, 2021). This is done in Table A3.

Age group Population (ABS, 2021) Doses 3+4
85+ 542,342 510,100
75-84 1,376,518 1,294,687
70-74 1,160,768 1,091,762

Table A3. Estimation of the number of doses 3+4 for the 70-74, 75-84 and 85+ age groups.

Finally, we sum the estimations from Table A2 and Table A3 into relevant age groups to
get the final number of doses 3+4 by ACM age group for Australia. This is done in Table

A4,

Age group Estimated number of doses 3+4
85+ 510,100

75-84 1,294,687

65-74 2,205,555

45-64 4,724,136

0-44 5,493,101

Table A4. Estimation of the number of doses 3+4 by age group in Australia.

These age groups (Table A4) match those of the mortality data for Australia. Note that
for the age group 0-44, doses 3 and 4 are for ages 16-44 years. There is no data for
doses 3 and 4 for ages 0-15 years in Figure Al (AG, 2022b).
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Vaccination periods

For Israel, we use the same start date (week) of the vaccination period for all age
groups. The integration of number of vaccine doses over the vaccine period is inclusive
of the first and last weeks defining the said period. The same holds for integrated ACM
periods.

For Australia, we use the vaccine-period end-date cumulative value of number of
administered vaccine doses.

Table A5 defines the vaccination periods used in this work.

Country Beginning Ending Duration (in
weeks)

Australia Week-10 of 2021 Week-37 of 2022 80

Israel Week-52 of 2020 Week-43 of 2022 97

Table A5. Vaccination periods for Australia and Israel used in this work.

“The week number is based on the ISO (International Organization for Standardisation) week
date system. In this system, weeks are defined as seven-day periods which start on a Monday.
Week 1 of any given year is the week which starts on the Monday closest to 1 January, and for
which the majority of its days fall in January (i.e. four days or more). Week 1 therefore always
contains the 4th of January and always contains the first Thursday of the year. Using the ISO
structure, some years (e.g. 2015 and 2020) contain 53 weeks.” (definition from ABS, 2022).

Trendlines

Table A6 describes the method used to calculate the trendlines fitted to ACM integrated
over the periods of equal duration as the duration of the vaccination period. The said
trendlines are used to calculate the baseline integrated mortality in the vaccination
period, in order to obtain the excess ACM of the vaccination period.

Country Age group Number of Method
integration
periods used*
Australia All 3 Average
Australia 85+ 3 Average
Australia 75-84 3 Average
Australia 65-74 3 Average
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Australia 45-64 3 Average

Australia 0-44 3 Average

Israel All 4 Linear regression
Israel 80+ 4 Linear regression
Israel 70-79 4 Linear regression
Israel 60-69 2 Average

Israel 50-59 4 Linear regression
Israel 40-49 4 Linear regression
Israel 30-39 4 Linear regression
Israel 20-29 4 Linear regression
Israel 0-19 6 Linear regression

Table A6. Method to estimate the trendlines. For Australia, we use the integrated ACM of
the 3 periods prior to the vaccination period, each period being of duration equal to that
of the vaccination period (80 weeks) and consecutive to each other, and we calculate the
average. For Israel, we use the integrated ACM of the number of periods indicated in the
table, prior to the first period directly preceding the vaccination period, each period
being of duration equal to the duration of the vaccination period (97 weeks) and
consecutive to each other, and we fit a linear trend.

* This is the number of integrated ACM points (periods) used to calculate the trendlines.

The error in the calculated baseline value of integrated ACM over the vaccination period
is estimated as the average of the absolute values of the residuals (fit to data) for the
points (periods) used in the fit.
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Appendix 2:
ACM and Vaccine Rollout Coincidences,
for Israel, by Age Group

We have previously illustrated synchronicity between anomalous all-cause mortality
(ACM) peaks and vaccine rollouts for:

Australia (and each of its states New South Wales, Victoria, and Queensland),
the USA (and its high-poverty states),

the USA state of Michigan, and

the Canadian province of Ontario

(See: Rancourt, D.G., Baudin, M. and Mercier, J. /// Probable causal association
between Australia’s new regime of high all-cause mortality and its COVID-19 vaccine
rollout. /// Correlation Research in the Public Interest, 20 December 2022 ///
https://correlation-canada.org/report-probable-causal-association-between-australias-
new-regime-of-high-all-cause-mortality-and-its-covid-19-vaccine-rollout/)

Here, we examine this question for Israel and some of its age groups (as indicated), in
the following Figure A2-F1:
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ACM/w and vaccine doses by week, Israel, 70-79, 2019-2022
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 ACM/w and vaccine doses by week. Israel, 50-59, 2019-2022
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Figure A2 F1: Israel, 2019-2022, for (top to bottom, and as indicated) all ages, 80+
years, 70-79 years, 60-69 years, and 50-59 years. All-cause mortality (ACM) by

week (pink, left y-scale); successive vaccine dose rollouts for doses 1, 2, 3 and 4,
as numbers of doses administered by week (black and overlapping greys, right y-

scale). The sources of all data are given in Appendix 1.
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Abstract

Objectives: Since the declaration of the COVID-19 pandemic, many governments have imposed policies
to reduce contacts between people who are presumed to be particularly vulnerable to dying from
respiratory illnesses and the rest of the population. These policies typically address vulnerable
individuals concentrated in centralized care facilities and entail limiting social contacts with visitors, staff
members, and other care home residents. We use a standard epidemiological model to investigate the
impact of such circumstances on the predicted infectious disease attack rates, for interacting robust and
vulnerable populations.

Design: We implement a general susceptible-infectious-recovered (SIR) compartmental model with two
populations: robust and vulnerable. The key model parameters are the per-individual frequencies of
within-group (robust-robust and vulnerable-vulnerable) and between-group (robust-vulnerable and
vulnerable-robust) infectious-susceptible contacts and the recovery times of individuals in the two
groups, which can be significantly longer for vulnerable people.

Results: Across a large range of possible model parameters including degrees of segregation versus
intermingling of vulnerable and robust individuals, we find that concentrating the most vulnerable into
centralized care facilities virtually always increases the infectious disease attack rate in the vulnerable
group, without significant benefit to the resistant group.

Conclusions: Isolated care homes of vulnerable residents are predicted to be the worst possible mixing
circumstances for reducing harm in epidemic or pandemic conditions.

Strengths and limitations of this study

o  We implement a simplest-possible sufficiently-realistic SIR model for an infectious respiratory
disease with two interacting populations: robust and vulnerable.
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e We investigate the predicted attack rates for a large range of parameters representing different
degrees of segregation or isolation of the minority vulnerable population.

o We make broad-ranging conclusions about the consequences of segregation and isolation of
vulnerable people, which apply to any epidemic model based on the SIR foundational
assumptions.

e large-parameter-range exploration is needed because the actual parameter values, especially
the frequencies of infectious contacts, are not well delimited by empirical measurements and
are often essentially unknown.

Introduction

During the COVID era (from the World Health Organization (WHO) 11 March 2020 COVID-19 pandemic
declaration to present), many governments have imposed policies isolating or segregating people
deemed highly vulnerable to respiratory disease, including by restricting movement into and out of long-
term care homes where elderly and physically or mentally disabled people reside and reducing contacts
between care home residents and staff (WHO, 2020a; WHO, 2020b, pp. 5, 22; WHO, 2020c, p. 10; Low
etal., 2021).

Although it was known that isolation and loneliness can have serious negative health consequences for
segregated vulnerable people (Armitage & Nellums, 2020; Holt-Lunstad et al., 2015; Valtorta et al.,
2016), and although it was known that residents concentrated in care homes are particularly vulnerable
to infectious diseases (Strausbaugh et al., 2003; Meyer, 2004; Monto et al., 2004; Gozalo et al., 2012;
Lansbury et al., 2017), and although data from the spring of 2020 showed disproportionately large all-
cause mortality increases in long-term care homes that were positively correlated with the number of
care home residents (Amore et al., 2021; Sundaram et al., 2021), governments continued to implement
policies confining vulnerable people into care homes and reducing social contacts with visitors and staff
more than one year after the WHO’s 11 March 2020 COVID-19 pandemic declaration.

Non-pharmaceutical interventions such as travel restrictions, workplace closures, and age-specific
enforced social distancing or quarantining have been justified during the COVID era using theoretical
infectious disease models based on the paradigm of spread by close-proximity pairwise contacts
(Ferguson et al., 2020; Kreps & Kriner, 2020; Chang et al., 2020; Moss et al., 2020; Ogden et al., 2020).
None of these models have been used to investigate the impact of segregation of the vulnerable into
care homes.

Since policies isolating the vulnerable from contact with the majority of society have been widely
applied, and since models are the main predictive tool used by governments to justify their public health
policies, it is important to investigate model predictions for a large range of possible epidemiological
parameters, rather than solely for limited ranges of parameters, which are not well constrained by
empirical studies and which may be subject to political or institutional bias.

Large-range exploration of the parameters is needed because the actual parameter values are not well
delimited by empirical measurements and are often essentially unknown; and because unexpected
effects or magnitudes of effects can occur in different otherwise unexplored and relevant regions of the
parameter space.
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In order to appreciate the spectrum of outcomes that are possible in a given theoretical model, and its
limitations and sensitivity to assumptions, it is crucial to base the model on the simplest-possible
sufficiently realistic conceptual foundation and only add extensions incrementally (Garnett & Anderson,
1996; Siegenfeld et al., 2020). This approach optimizes relevance and minimizes confounding the results
with complexity and intangible propagation of error. Focusing on only the core model ingredients limits
the dimensionality of the model, permitting the needed examination of the model’s outcomes across a
comprehensive range of parameter values. To the extent that this approach is not adopted, the model
becomes more removed from reality, because each additional complexity or sophisticated model
element introduces new mechanisms, and therefore new assumptions about how those mechanisms
function and new uncertainties about the values of their associated parameters.

At their core, the baseline epidemiological models on which essentially all more sophisticated models
are built, have two main parameters determining whether an infectious disease epidemic emerges and,
if it does, its magnitude and duration. These two parameters are: the rate at which individuals
experience pairwise contacts with others that could result in transmission of the infection, and the rate
at which infected individuals recover and become immune.

We construct a simple susceptible-infectious-recovered (SIR) epidemic model consisting of two
interacting populations, one representing the relatively robust majority of society and the other the
vulnerable minority. The different health states of individuals in the two populations are represented by
their different recovery times upon infection, as is well established for respiratory diseases (Faes et al.,
2020; Rhee et al., 2021). We investigate the size and duration of epidemics occurring for a broad range
of different within- and between-population contact frequencies representing different segregation or
isolation policy-linked behaviours. This approach allows us to make broad-ranging conclusions about the
consequences of segregation of vulnerable people that apply to all epidemic models based on the SIR
foundational assumptions.

Model

We implement a susceptible-infectious-recovered (SIR) model for two populations, indexed as
population “a” and population “b”. The total number of a individuals is N; and the total number of b
individuals is Np.

Throughout this paper, we assign the a population to be the majority population of robust individuals,
and the b population to be the minority population of vulnerable individuals.

Following the usual SIR model structure, a person can be in one of three states: susceptible to infection
(S), infectious (l), or recovered and immune (R). If a susceptible person comes into contact with an
infectious person, the susceptible person can become infectious, and infectious people eventually
recover. The numbers of susceptible, infectious, and recovered people in group i at time t are therefore
Si(t), Ii(t), and Ri(t), respectively, and N; = Si(t) + Ii(t) + Ri(t).

The number of individuals in each of the three epidemiological compartments, in each of group a and b,
evolve according to the following equations:
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dR
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Equations 1a-f involve three sets of parameters, described below.

The parameters yq, and y, represent the rates at which a and b individuals (robust and vulnerable
individuals, respectively) recover from infection. Since the b population represents the minority,
vulnerable population: Ny < Ng. Since they are more vulnerable than a individuals, b individuals take a
longer time to recover from infection, such that y, < y..

We use a value of y, = 75 yrs™ corresponding to a recovery time of approximately 5 days for healthy
individuals (Wolfel et al., 2020; CDC, 2022), and we consider three values of ys, equal to v, Vo/2, and
Ya/4, corresponding to recovery times of approximately 5, 10, and 20 days for the b individuals (Faes et
al., 2020; Rhee et al., 2021).

The other two sets of parameters, ¢;j and By, are intrinsically dependent, such that one set is actually
redundant, which can be understood as follows. B represents the probability that a contact between a
susceptible i (a or b) person and an infectious j person results in infection of the susceptible i person,
whereas c; represents the frequency (number per unit time) of contacts between an j person and a j
person. Therefore, we are free to make the following simplification. Without loss of generality, in this
paper we set Bas = Bos = Bab = Bra = 1. This means that the only contacts considered and counted are by
definition contacts that are guaranteed to result in transmission when the contact involves a susceptible
i person and an infectious j person.

There is no reason or advantage to considering other definitions of ¢; having associated smaller values of
Bj; and it would make no difference in the calculated results arising from Eqgns. 1a-f. Under this
notational and conceptual simplification, the c; are the dominant control parameters in the model,
along with the recovery rates yq, and y,. We apply this interpretation of ¢; (arising from setting all the
parameters equal to 1) throughout the remainder of the paper.
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The within-group contact frequencies, c,s and ¢y are independent of one another. The between-group
contact frequencies c,» and cye are also independent. However, we impose the following relationship
between c.p, and ¢y, modulated by the coefficient A:

CpalNp
N, (2)

Cab:A

A value of A = 1 corresponds to a strict proportionality between cq, and ¢y, determined purely by the
relative sizes of the populations of the two groups, as would be common to impose in the sliding
definition of contact in which B; are undetermined (Garnett & Anderson, 1996).

In the present paper, A = 1 effectively means that pairwise contact events that are of a physical
proximity and duration sufficient to guarantee infection of a susceptible b person by an infectious a
person are also sufficient to guarantee infection of a susceptible a person by an infectious b person.
However, in principle, A can take values less than 1, due to the more resistant health status of a
individuals compared to b individuals. Since, given the relative sizes of the populations N, and Ny, cap is
much smaller than ¢y, and typically much smaller than cqq in our analyses, we use a value of A = 1 in the
main text of this paper. In the Appendices, we show that our results are robust against smaller values of
A

We also define ¢, = Caa+ Cap and cp = Cup + Cha t0 be the total contact frequencies of a and b people,
respectively. The majority, robust (a) population is typically younger and more socially active than the
minority, vulnerable (b) population, such that the frequency of all person-to-person contacts is generally
higher in the a group than the b group (Prem et al., 2017). However, when ¢, and ¢, represent the
frequency of only those types of contacts that are guaranteed to result in infection of a susceptible
individual (as per our simplifying assumption that Baa = Bss = Bab = Bse = 1, in the present article), then it
is not unreasonable to consider that ¢, can be greater or significantly greater than c,, due to the frailer
health status of the b individuals.

Results

We examine the epidemic outcomes for the robust (a) and vulnerable (b) populations for a large range
of possible contact frequencies and recovery rates. For specificity, we use a total population of N = 107
individuals, with Ny/N = P, = 0.95, such that the a population constitutes 95% of the entire society, and
the b population 5%. The simulations are “seeded” with 100 infectious individuals inserted
proportionally into each of the two groups, such that /,(t=0) = 95 and /,(t=0) = 5.

We verified that the results are the same on varying P,, A, and seeding magnitude and distribution,
which is shown in the Appendices.

We define the attack rate among population i as the proportion of initially-susceptible i people who
become infected during the epidemic:

A; = (Si(t0) = Si(tp))/Si(to), (3)
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where Si(to) is the number of susceptible i people at the beginning of the epidemic and Si(ty) is the
number of susceptible i people remaining once there are no longer any infectious people in either of the
two groups (a or b).

In order to examine the impact of policies that isolate or segregate the b individuals from the a group,
we introduce the index x equal to the share of a b individual’s contacts that are with a people:

X = Cpa/ Cb, (4)

When x = 0, b individuals only ever have contacts with other b individuals, and when x = 1, b individuals
only ever have contacts with a people. In this way, x, represents the degree of segregation versus
intermingling of the a and b groups. Complete segregation is x = 0. Complete a-b intermingling, while
avoiding all b-b contacts, is x = 1.

Fig. 1 shows the evolution of the epidemic (number of new cases per day, over time) in the aand b
groups, for different values of x. In this example, cqis slightly larger than y, (in order that ¢,/ va (“Ro”) =
1.1 > 1 such that an epidemic would occur in the a group if it were completely isolated from the b group)
and cp is 25% larger than cq. Y = Yo/4, such that b people take four times as long to recover from
infection as a people.
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Figure 1: Epidemic curves showing the number of new cases per day in population b (vulnerable, minority group, solid lines, left
y-axis) population a (robust, majority group, dashed lines, right y-axis), for different values of x, and for the fixed model
parameters indicated above the figure. Inset: attack-rates A, and A as functions of x (coloured circles indicate the x values
listed in the main figure legend).

As can be seen in Fig. 1, x (the degree of separation or intermingling) has a large effect on the size and
duration of the epidemics occurring in both the a (robust, majority) and b (vulnerable, minority) groups.

When x =0, b individuals only ever come into contact with other b’s, and the number of new cases per
day in the b group rapidly surges, peaks, and decays, and essentially all of the b population becomes
infected (Ap = 1, inset of Fig. 1). An epidemic also occurs in the a group, but the attack rate is smaller (A,
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inset) and it takes significantly longer for the epidemic to transpire (see the dashed blue line in the
extreme lower-right corner of Fig. 1).

In Fig. 1, as x is increased above 0, a larger and larger share of b contacts are with a individuals. In the b
group, the epidemic size (peak value of new cases per day and attack-rate) decreases with increasing x
and the duration of the epidemic increases. Going from x = 0.5 to x = 0.75 and x = 1, A, is significantly
decreased, to the point where less than half of the susceptible, vulnerable b population becomes
infected. On the other hand, increasing x above 0 initially increases A, and significantly shortens the
time it takes for the number of new a cases per day to surge and decay. When x = 1, the epidemic curves
for the a and b populations have their peaks at approximately the same time, and the attack rates
become similar for the two groups.

Fig. 1 illustrates the important effect of x on the epidemic outcomes in the two populations. In
particular, it is apparent that larger x (more contacts with robust individuals) can produce significantly
better (lower attack rate) results for the minority vulnerable population. This is important if it is a
general feature because the vulnerable individuals in the real world have higher risk of dying on being
infected (COVID-19 Forecasting Team, 2022), which is the motivation for wanting to protect them.

Next, we present figures showing results across our large range of possible and reasonable ¢, and ¢
values, for different degrees of segregation vs. intermingling, x, between the a and b groups, and for the
different values of y, representing different degrees of vulnerability of the b population.

Fig. 2 contains a collection of panels showing how the attack-rates A, and A, change as ¢, and ¢, are
varied. Each panel corresponds to a choice of x and ys.

The panel in the upper-left corner of Fig. 2 corresponds to x = 0 and yp = yo/4 = 18.75. Since x = 0, there is
complete segregation between the a and b groups. In this case, an epidemic emerges in the a group
when ¢, >y, and in the b group when ¢, > yp, and this can be seen by the fact that A; > 0 when ¢, > 75,
for all values of ¢, and A, > 0 when ¢, > 18.75, for all values of ¢,. Thus, when x = 0, we see the usual
transition to an epidemic, which occurs in a one-population SIR model when R = c/y > 1, in each

group.

The panels in the second through fifth rows of Fig. 2 correspond to x > 0, progressively increasing up to x
=1 (fifth row). For many values of ¢, increasing x results in a shift upwards (to higher ¢, values) of the
red contour lines, indicating a decrease in A, for fixed cp.

For example, when y, = 18.75 (left column of panels), ¢, = 20 and ¢, = 40, the attack rate A, is large when
x =0. However, as x is increased, the red contour lines shift upward, indicating a lowering of the attack
rate at (cq, ¢b) = (20, 40), until A, = 0 (no epidemic in the b population) in the second-last and last panels
in the column (x=0.75 and x = 1).

The positioning of the blue contour lines (A,) is generally less affected by changes in x than that of the
red contours. This is particularly evident for the case of y, = y, (right column of panels). This is due to the
asymmetry in the sizes of the populations of the a and b groups (N, being 5% of the total population).

To better appreciate the model results summarized in the contour maps of Fig. 2, it is helpful to
simultaneously examine the attack rates for a particular point in the (c,, c») parameter-space as x is
varied. This is shown in Figs. 3-5.
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Figure 2: Contour maps of A, (blue lines, see scale at the upper right) and A, (red lines, see scale at the upper right) for a range
of contact frequencies ¢, and cp. Each column of panels corresponds to a different y, and each row to a different x, as indicated.
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Figs. 3-5 show the variation in the attack rates A, and A, as functions of x, for various (c,, ¢») coordinates.
Each panel is for one pair of the (cq, ¢») coordinates, with ¢, increasing (in columns) from left to right,
and ¢, decreasing (in rows) from top to bottom. In this way, one can visualize the behaviours of the
attack rates with x, on the (cq, ¢») plane, across a range of ¢, and ¢, values sampled from the phase
diagrams shown in Fig. 2.

As can be seen, when v, = yo/4 (Fig. 3), increasing x decreases A, for all values of (cq, ¢») shown in the
figure. The decrease in A, can be dramatic, including going from A, = 1 for small values of x to A, = 0 for
large values of x. Increasing x generally increases A,, and the increase in A, is largest for values of ¢, < ya
(such that no epidemic would occur in the a group if it were completely isolated from the b group) and
for intermediate values of x. When ¢, > y,, increasing x has a very small effect on A,, because the a group
has a much larger population than the b group; this is reflected in the small changes in the blue contour
lines in Fig. 2 for ¢; > yo and for increasing x.

When v, = vo/2 (Fig. 4), increasing x generally decreases Ay, similar to the results in Fig. 3, and x has a
smaller effect on A, compared to the results in Fig. 3. The only parameter values for which A, increases
with x are in the extreme lower-right corner of Fig. 4, for which (cq, ¢») = (100, 25) and (125, 25). For
these two pairs of (cg, ¢b) values, ¢y < yp, such that the contact frequency of b individuals is so low that an
epidemic would not occur among the vulnerable if they were completely excluded from the majority
group. Furthermore, for (cq, ¢») = (100, 25) and (125, 25), ¢, is much greater than cp, which is unrealistic
given our interpretation of ¢; implied by our simplifying assumption Bas = Bes = Bas = Bra = 1 (see the
Model section). We note that a similar, small increase in A, versus x also occurs in the case of y, = 18.75
when ¢, < y» and ¢, >> ¢y, as can be seen in the left column of panels in Fig. 2, e.g. when ¢, = 15 and ¢, =
120.

When vy, = yq (Fig. 5), x has little effect on A,, due to the differences in population sizes of the aand b
groups. Increasing x can decrease A, significantly when ¢, >> ¢, (panels in the upper-left corner of Fig. 5)
and can increase A, significantly when ¢, >> ¢, (panels in the lower-right corner of Fig. 5). This
asymmetry occurs because of the asymmetry in population sizes N, and Ny, causing Cap << Cha (When A =
1) such that it is much less likely for any given a person to come into contact with a b person than vice-
versa. Similarly, in the right column of panels in Fig. 2, increasing x has a large effect on the red (Ap)
contour lines and essentially no effect on the blue (A,) contour lines.

In summary, increasing x for fixed ¢, and ¢, decreases the attack rate in the vulnerable group across all
realistic values of the contact frequencies, when b represents a minority vulnerable population (here
making up 5% of the total population and having a recovery time twice or four times as long as for the
robust majority). This means that the vulnerable population is harmed by isolation from the robust
population and benefits from mixing with or dilution within the robust population, in terms of risk of
infection during the course of the epidemic or pandemic.

In the Appendices, we show that the same results hold when varying P;, A, and the seeding magnitude
and distribution.


https://doi.org/10.1101/2023.02.05.23285490
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2023.02.05.23285490; this version posted February 14, 2023. The copyright holder for this preprint
(Wgazas not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license .

P;=095 Ni;=0,Nlp=0,y,=75 y,=1875A=1

1.0 1.0 1.0 10 10
—_— Al
0.8 0.8 0.8 0.8 0.8
N — A
S o o a o o
0.6 0.6 0.6 0.6 0.6
< < < < <
a 8 o o ] o
G < o4 < 0.4 < 0.4 << 0.4 < 0.4
0.2 0.2 0.2 0.2 0.2
0. 0.0 0. 0.0 0.0
0.00 025 050 075 100 0.00 025 050 075 1.00 000 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 100
X X X X X
10 1.0 1.0 1.0 1.0
0.8 0.8 0.8 0.8 0.8
=
=}
— 206 206 2 0.6 206 2 0.6
I < < < < <
5 5 & 5 5
G << o4 < 0.4 < 0.4 < 04 <€ 04
0.2 0.2 0.2 0.2 0.2
0.0 0.0 0. 0.0 0.0
0.00 025 050 075 100 0.00 0.25 0.50 075 1.00 0.00 025 0.50 075 1.00 0.00 025 050 075 100 000 025 050 075 100
X X X X X
1.0 1.0 10 1.0 10
0.8 0.8 0.8 0.8 0.8
0 -] o Q Q =1
~ 0.6 0.6 0.6 0.6 06
I < < < < <T
o & @ & &
§ < o4 < 0.4 < 0.4 <T 04 <C 04
0.2 0.2 0.2 0.2 0.2
0. 0.0 0, 0 0.0
000 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 1.00 000 025 050 075 100
X X X X X
1.0 1.0 1.0 10 1.0
0.8 0.8 0.8 1 0.8 0.8
S o o a o o
0.6 0.6 0.6 0.6 0.6
[ < < < <
o 8 o @ [ ]
G < o4 <C 0.4 <C 0.4 << 0.4 < 0.4
0.2 0.2 0.2 02 0.2
0.0 0.0 T 0. T 0 T 0.0 T
000 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 075 100 000 025 050 075 1.00
X X X X X
1.0 1.0 L0 10 1.0
0.8 0.8 0.8 0.8 0.8
9 ] e o =] ]
(o] 0.6 0.6 0.6 0.6 0.6
s < < < <
a B [ o o o
oo ol o o o ¥
0.2 0.2 0.2 0.2 0.2
0.0 0.0 0.0 0.0 0.0
0.00 025 050 075 100 0.00 025 0,50 075 1.00 0.00 0.25 0.50 075 100 0.00 025 050 075 100 000 025 050 075 100
X X X X X
Ca=25 C; =50 Ca=75 Cc, =100 Cy =125

Figure 3: Attack-rates A, and Ay as functions of x, for a range of contact frequencies ¢, and ¢, for ys = ya/4.
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Figure 4: Same as Fig. 3, with y, = yo/2.
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Figure 5: Same as Fig. 3, with y, = ya.
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Discussion

Using a general two-population epidemic model, we have shown that increasing the degree of
intermingling of the minority vulnerable (b) population with the majority robust (a) population reduces
the attack-rate among the vulnerable. The advantage to the vulnerable group of intermingling with the
robust group increases as the vulnerability of the minority group increases, that is, as their disease
recovery time increases. Increasing the share of a vulnerable person’s interactions that are with other
vulnerable people, by confining them together in the same facility, increases the likelihood of infection
of the vulnerable person during the course of the epidemic or pandemic, because infected vulnerable
people remain infectious for a long time, relative to robust people.

The only exception to this general rule occurs if the contact frequency for vulnerable individuals is so
small that no epidemic would occur in the vulnerable group if it were completely segregated from the
robust majority of society, while the frequency of guaranteed infection-causing contacts for robust
people is large enough to produce an epidemic in that group and is also much higher than that of
vulnerable individuals. We expect this exception to be irrelevant in reality because it is unrealistic for ¢,
>> ¢y, given the definition of the contact frequencies c; as representing contacts of sufficient physical
proximity and duration such that a susceptible i person is guaranteed to be infected by an infectious j
person (see the Model section).

Our analysis focuses on the two dominant and most fundamental features present in all epidemic
models: the contact frequencies and recovery rates. On this simplest-possible yet sufficiently realistic
foundation, we establish that segregating the vulnerable into care homes virtually always produces
negative results in epidemic models. Not surprisingly, therefore, researchers using complex agent-based
models have found that segregation of vulnerable individuals produces worse outcomes both for that
group and for the society overall (Markovic et al., 2021).

Others have used simple epidemiological models to study segregation of “high-transmission-risk” and
“low-transmission-risk” groups (Munday et al., 2018; Yuan et al., 2022; Garnett & Anderson, 1996).
However, because such studies are focused on different transmission rates due to different behavioural
and contact characteristics of the two groups — such as sexual preferences, cultural lifestyle factors, and
willingness to become vaccinated — they do not consider the impact of different recovery rates for the
two populations, which is crucial in the context of segregation of vulnerable individuals from the robust
majority. Those studies, therefore, do not directly address the problem of society’s vulnerable sector
regarding infectious diseases.

Segregation based on vaccination status has also been studied recently using simple models (Hickey &
Rancourt, 2022; Fisman et al., 2022; Virk, 2022; Kosinski, 2021). In this application, Hickey and Rancourt
found that the effect of the segregation on increasing or decreasing the contact frequencies in the
segregated groups is crucial and can cause the predicted epidemic outcomes to be worse for both the
vaccinated and unvaccinated, compared to no segregation (Hickey & Rancourt, 2022). This highlights the
importance of contact frequencies, which are necessarily impacted by segregation policies, and which
again play a pivotal role in the present analysis.

Isolation policies intending to protect the vulnerable reduce their contacts with the outside world, for
example by barring visitors from entering care homes and by reducing the frequency of interaction
between care home staff and residents. The care home isolation policies are also designed to reduce the
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number of epidemiological contacts between the care home residents themselves. However, since
transmission of respiratory diseases is air-borne via long-lived suspended aerosol particles (Shaman &
Kohn, 2009; Shaman et al., 2010) and occurs in indoor environments (Bulfone et al., 2021), confining
many vulnerable people in the same facility in-effect increases the per-individual frequency of infectious
contacts, because they are breathing the same air and ventilation is imperfect. Indeed, virtually all
studied outbreaks of viral respiratory illnesses have occurred in indoor environments (Moser et al.,
1979; Loeb et al., 2000; Salgado et al., 2002; Bulfone et al., 2021; Javid et al., 2021) and care homes for
the elderly are known to be “ideal environments” for outbreaks of infectious respiratory diseases, due
to the susceptibility of the residents living in close quarters (Strausbaugh et al., 2003; Gozalo et al.,
2012; Lansbury et al., 2017). A policy that decrease cyq, for example by barring younger family members
from entering care homes to visit their elderly relatives, causes the isolated vulnerable people to spend
more time in the care home, breathing the same air as the other residents. This in-effect increases cpp.

For constant c,, decreasing ¢, reduces the attack rate in the vulnerable group, regardless of the value of
X, as can be seen from Fig. 2. However, the sought decreasing of ¢, is imposed by isolating the
vulnerable (from society, loved ones and each other), which has important negative health
consequences (Cohen et al., 1991; Cohen et al., 1997; Cohen, 2004; Holt-Lunstad et al., 2010; Holt-
Lunstad et al., 2015; Valtorta et al., 2016). Psychosocial factors, including depression, lack of social
support, and loneliness are known to play key roles in the negative health effects of isolation
(Hemingway & Marmot, 1999; K.A. Matthews et al., 2010; Elovainio et al., 2017; Groarke et al., 2020;
Spring et al., 2020). Proposed psychosocial factors uncovered by participatory qualitative research
include dissonance between expectations and reality (Wang et al., 2020; Tarlov, 1996), which could be
significant for vulnerable elderly patients with no prior life experience relevant to the isolation measures
applied during the COVID era, which had no historical precedent.

Whereas governments used theoretical epidemic models to justify most public health policies during the
COVID era, within a tunnel vision of reducing risk of infection with a particular virus, they appear not to
have considered what those same models predict about infection rates under conditions of care home
segregation; and they appear to have disregarded the exponential increase of infection fatality rate with
age (COVID-19 Forecasting Team, 2022). Care home segregation policies may have been responsible for
many deaths attributed to COVID-19 in Western countries.

We conclude that segregation and isolation of the vulnerable into care homes as a strategy to reduce
the risk of infection during the course of an epidemic or pandemic is contrary to the most relevant
immediate considerations from epidemiological models, in realistic conditions in which vulnerable
people are highly susceptible and take longer to recover. The model parameter space, within possible
parameter values, is one where it is virtually never epidemiologically advantageous to segregate and
isolate frail people.
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Table of Symbols

Symbol Description
Na Total number of a individuals
Np Total number of b individuals
Pq Proportion of the total population that belongs to the a group
A Coefficient modulating the relationship between cu and cp, as per Eg. 2 of the main text
Ya Recovery rate of infected a individuals
Vb Recovery rate of infected b individuals

seed Total number of infected individuals at the outset of the simulation
ssa Share of all seed individuals who belong to the a group
Nliq Natural immunity of a individuals (set to 0 in all results shown in the main text and the
appendices)
Nl Natural immunity of b individuals (set to 0 in all results shown in the main text and the
appendices)

Ca Frequency of contacts involving an a individual *
Caa Frequency of contacts between two a individuals *
Cab Frequency of contacts between an g and a b individual *
Cb Frequency of contacts involving an a individual *
Cbb Frequency of contacts between two b individuals *
Cba Frequency of contacts between an b and an a individual *
Aq Attack rate among the a population (Eq. 3, main text)
Ap Attack rate among the b population (Eq. 3, main text)
X Degree of segregation versus intermingling of the a and b groups (Eq. 4, main text)

* Note that contact frequencies ¢j (i.€., Caa, Cab, Cob, and csq) are defined such that the contact is
guaranteed to result in infection when the contact is between a susceptible i person and an infectious j
person, and that cq = Caa + Cap and ¢, = Coy + Cha, @s explained in the main text (Model section).
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A.1: Attack-rate contour maps for different values of A
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A.2: Attack-rate vs. x composite plots, for different values of A
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Appendix B: Results for P, = 0.8 and P, = 0.6

This Appendix shows attack-rate contour maps for two different values of P,, for the same values of ¢,
b, and x used in the main text and elsewhere in the Appendices.

Note that Egs. 2 and 4 of the main text impose constraints on the c;. In some of the contour maps
shown in Appendix B and Appendix C, the contour lines end abruptly at points in the (c,, ¢») plane where
these constraints are reached.

For example, for P, =0.8, x =1, and y, = 18.75, the point (¢, = 20, ¢, = 100) is unphysical, because x =1
implies that css = ¢, = 100 (see Eq. 4, main text), and A =1, P, = 0.8, and cse = 100 are such (from Eq. 2,
main text) that ca = Acpa(1-Pa)/Pa = 25 > cq Which is unphysical, since ¢, = Caa + Cap and both c,e 2 0 and cap
> 0. Accordingly, the contour lines in the contour map for P, = 0.8, x = 1, and y, = 18.75 (lower-left panel
in the first figure in section B.1, below) end before the unphysical point (cs = 20, ¢, = 100).
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B.1: Attack-rate contour maps for different values of A and for P, = 0.8
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B.2: Attack-rate contour maps for different values of A and for P, = 0.6
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Appendix C: Varying seed distribution

The figures in Appendix C show contour maps for P, =0.95, P, = 0.8, and P, = 0.6, with the initial 100
infected “seed” individuals placed entirely in the a population (ssa = 1). That is, none of the b individuals
are initially infected, in the simulations shown in Appendix C.

As can be seen from the figures below, placing all “seed” individuals in the a group has no effect on the
resulting attack rates as functions of c,, c», and x, except for the trivial case of x =0, in which it is
impossible for any b person to become infected, since x = 0 means that ¢y, = 0.
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C.1: Attack-rate contour maps for different values of A, for P, = 0.95, seed = 100, and ssa = 1
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C.2: Attack-rate contour maps for different values of A, for P, = 0.8, seed = 100, and ssa = 1
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C.3: Attack-rate contour maps for different values of A, for P, = 0.6, seed = 100, and ssa = 1
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Appendix D: Varying seed magnitude

This Appendix contains attack-rate contour maps for the parameters used in the main text figures, but
for different magnitudes of the initial seed number of infected individuals (parameter “seed”). As can be
seen, changing the seed magnitude does not change the attack-rate results.
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ABSTRACT: All-cause mortality by week in Australia shows that there
was no detectable excess mortality 13 months into the declared
pandemic, followed by a step-wise increase in mortality in mid-April
2021, synchronous with the rollout of the COVID-19 vaccine prioritizing
elderly, disabled and aboriginal residents. The excess mortality in the
vaccination period (mid-April 2021 through August 2022; 14 % larger
all-cause mortality than in recent pre-vaccination periods of same time
duration; 62 million administered vaccine doses) was 31+1 thousand
deaths, which is more than twice the deaths registered as from or with
COVID-19. In addition, a sharp peak in all-cause mortality (mid-January
to mid-February 2022; 2,600 deaths) is synchronous with the rapid
rollout of the booster (9.4 million booster doses, same time period), and
is not due to a climatic heatwave. We give thirteen numbered
arguments as to why we conclude that the excess mortality in Australia
Is causally associated with the COVID-19 vaccine. The corresponding
vaccine injection fatality ratio (VIFR) is approximately 0.05 %, which we
compare to estimated VIFR values from the USA Vaccine Adverse
Event Reporting System (VAERS) and from all-cause mortality data for
India, Southern states of the USA, Michigan (USA) and Ontario
(Canada).

Australia experienced a significant and sustained increase in all-cause mortality, starting
with its COVID-19 vaccine rollout aimed at high-risk residents in mid-April 2021,
whereas it saw no detectable excess all-cause mortality up to that point during 13
months of a pandemic that was declared by the World Health Organization (WHO) on
11 March 2020.

Starting in mid-April 2021, the all-cause mortality per week in Australia shows a
sustained increase of >10 %, during which it never returns to its seasonal low value (of

approximately 3,000 deaths/week) and attains highs of >4,000 deaths/week in June-
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July-August 2022. The step-wise increase in all-cause mortality remains large up to the
final date of presently consolidated official government statistics (week-34 of 2022,
week ending 28 August 2022) (Australian Bureau of Statistics, 2022a).

Over the measured period of the step-wise increase in all-cause mortality (mid-April
2021 through August 2022; 14 % larger all-cause mortality than in recent pre-
vaccination periods of same time duration; 62 million administered vaccine doses) there
are 31+1 thousand excess deaths of all causes in Australia, whereas no excess deaths
are detected in the prior 13-month period since a pandemic was declared (mid-March
2020 through mid-April 2021).

The excess all-cause mortality following the COVID-19 vaccine rollout (31,000 deaths,
mid-April 2021 through August 2022) is more than twice the total number of deaths
registered as being from or with COVID-19 (14,014 deaths, 1 January 2020 through
29 August 2022; WHO, consulted 20 December 2022,

https://covid19.who.int/region/wpro/country/au).

The above points are corroborated and illustrated in the following figures.


https://covid19.who.int/region/wpro/country/au
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ACM/w, Australia, 2015-2022
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Figure 1A: All-cause mortality in Australia, all ages, from week-1 2015 (week ending 4 January
2015) through week-34 2022 (week ending 28 August 2022). Light-blue: All-cause mortality by
week, left y-scale. Dark-blue: Integrated all-cause mortality over successive and non-overlapping
72-week periods (week-15 2021 through week-34 2022, for most recent period), right y-scale. Each
point is positioned on the x-axis at the 1st week of its 72-week integration period. (Data source:
Australian Bureau of Statistics, 2022a.)
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ACM/w, Australia, 85+ age group, 2015-2022
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Figure 1B: All-cause mortality in Australia, ages 85+ years, from week-1 2015 (week ending 4
January 2015) through week-34 2022 (week ending 28 August 2022). Light-blue: All-cause
mortality by week, left y-scale. Dark-blue: Integrated all-cause mortality over successive and non-
overlapping 72-week periods (week-15 2021 through week-34 2022, for most recent period), right
y-scale. Each point is positioned on the x-axis at the 1st week of its 72-week integration period.
(Data source: Australian Bureau of Statistics, 2022a.)
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ACM/w, Australia, 75-84 age group, 2015-2022
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Figure 1C: All-cause mortality in Australia, ages 75-84 years, from week-1 2015 (week ending 4
January 2015) through week-34 2022 (week ending 28 August 2022). Light-blue: All-cause
mortality by week, left y-scale. Dark-blue: Integrated all-cause mortality over successive and non-
overlapping 72-week periods (week-15 2021 through week-34 2022, for most recent period), right
y-scale. Each point is positioned on the x-axis at the 1st week of its 72-week integration period.
(Data source: Australian Bureau of Statistics, 2022a.)
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ACM/w, Australia, 65-74 age group, 2015-2022
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Figure 1D: All-cause mortality in Australia, ages 65-74 years, from week-1 2015 (week ending 4
January 2015) through week-34 2022 (week ending 28 August 2022). Light-blue: All-cause
mortality by week, left y-scale. Dark-blue: Integrated all-cause mortality over successive and non-
overlapping 72-week periods (week-15 2021 through week-34 2022, for most recent period), right
y-scale. Each point is positioned on the x-axis at the 1st week of its 72-week integration period.
(Data source: Australian Bureau of Statistics, 2022a.)
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ACM/w, Australia, 2015-2022
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Figure 2: All-cause mortality in Australia, all ages, from week-1 2015 (week ending 4 January 2015)
through week-34 2022 (week ending 28 August 2022), compared to the COVID-19 vaccine rollout.
Light-blue: All-cause mortality by week, left y-scale. Dark-blue: Cumulative 1st doses of the
vaccine. Orange: Cumulative 2nd doses of the vaccine. (Data sources: Australian Bureau of
Statistics (2022a); and https://www.covidl9data.com.au/vaccines, consulted on 14 December
2022.)

The vaccine rollout is shown in more detail as follows.


https://www.covid19data.com.au/vaccines
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Vaccine doses delivered (raw and / 100 ppl)
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Figure 3A: Cumulative COVID-19 vaccine doses administered (all dose types) by time (24 February
2021 through 22 August 2022) by state in Australia (as indicated, in the sequence NSW, VIC, QLD,
SA, WA, TAS, NT, ACT). (Source: https://www.covidl9data.com.au/vaccines, accessed 20
December 2022.)



https://www.covid19data.com.au/vaccines
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Dally reports of COVID-19 vaccinations (use tabs or dropdown)
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Figure 3B: Daily and 7-day average daily reported COVID-19 vaccine doses (all dose types)
administered by time (1 March 2021 through 22 August 2022) in Australia. (Source:
https://www.covidl9data.com.au/vaccines, accessed 20 December 2022.)

Mortality and vaccination data specifically for the state of Victoria (VIC), Australia, is

shown, for example, as follows.

7-day avg (line)

10


https://www.covid19data.com.au/vaccines
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ACM/w, Victoria, 2015-2022
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Figure 4A: All-cause mortality in the state of Victoria (VIC), Australia, all ages, from week-1 2015
(week ending 4 January 2015) through week-34 2022 (week ending 28 August 2022). Light-blue:
All-cause mortality by week, left y-scale. Dark-blue: Integrated all-cause mortality over successive
and non-overlapping 72-week periods (week-15 2021 through week-34 2022, for most recent
period), right y-scale. Each point is positioned on the x-axis at the 1st week of its 72-week
integration period. (Data source: Australian Bureau of Statistics, 2022a.)

11
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Dally FEDOFtS of COVID-19 vaccinations (use tabs or dropdown)
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Figure 4B: Daily and 7-day average daily reported COVID-19 vaccine doses (all dose types)
administered by time (28 February 2021 through 22 August 2022) in the state of Victoria (VIC),
Australia. (Source: https://www.covidl9data.com.au/vaccines, accessed 20 December 2022.)

The step-wise increase in mortality is evident in Figure 1 (A through C), and it is
synchronous with the COVID-19 vaccine rollout (Figures 2, 3 and 4).

The step-wise transition to a regime of larger all-cause mortality is also seen in the

different states of Australia. The example of Victoria is shown in Figure 4. The same

phenomenon occurs in the all-cause mortality of all the eight states of Australia,

although not clearly in NT (Northern Territory) (Appendix 1).

In addition to the above-described step-wise change in regime of all-cause mortality,

there is a prominent peak in all-cause mortality, having a full duration of seven weeks,

from mid-January to mid-February 2022. It is not consistent with a seasonal feature and

it is synchronous with a large burst in COVID-19 vaccine dose delivery (Figures 1, 3B

7-day avg (line)
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and 4), which was the rollout of the booster (3rd doses) in Australia. The said 7-week-
duration peak in all-cause mortality is prominent in the states NSW, QLD and VIC, but is
essentially not present in the other states (Appendix 1). The booster rollout is shown in
the following Figures 5 and 6.

Vaccine 3rd doses (boosters)

< Mational w »
280K 70%
[ ]
260K 65%
240K W 60%
220K s 55%
200K R '( 50%
180K = 455,
=
2 160K RS 40%
i ~ )
140K 35% =
@ A 1
8 120K o 0% 5
S 5 5
E 100k > 5% T
= & -
= 80K 0%
[a] —
GOK 15%
40K 10%:
20K & 5%
0 0
A L W A L I O O O O I O O O O O I I I o O o I o O o o I o O o I I o O ) Lo S o o o O O O e I o o
gogoooooooooagooandadooananooaoooaneodoooodnoodandogoaay
CCCreySdddd eSS g g8 833I33855 550882288 8555555888¢88
o =T, v ol - - e = v -l e - - gl g e
MmO rErEerAd NN MO OO "Ter AN OO " "N "N M OO0 T TN OO rerNN OO0 rrTNOO " r"TNNOO™ ™

Daily 3rd doses (bars) @ % 3rd dose (ling)

Figure 5: Daily and cumulative booster (3rd doses) rollout in Australia. The time axis is from 10
November 2021 through 22 August 2022. (Source: https://www.covidl9data.com.au/vaccines,
accessed 20 December 2022.)

Direct comparisons between all-cause mortality by week for the mid-January to
mid-February 2022 peak and booster delivery by week are shown below, for Australia
and for the states NSW, VIC and QLD (Figures 6A through 6D).
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ACM/w, Australia, 2021-2022
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Figure 6A: Highlight of the mid-January to mid-February 2022 mortality peak, in relation to booster
(3rd doses) delivery, in Australia. All-cause mortality by week (light-blue) and booster doses
delivered by week (black) from 2021 to 2022. (Data sources: Australian Bureau of Statistics
(2022a); and https://www.covidl9data.com.au/vaccines, consulted on 14 December 2022.)

ACM/w, New South Wales, 2021-2022

® Deaths ®Boosters

0,6M
1400
0,5M
1300
0,4M
21200 z
w
£ 03M 8
> o
a a
1100
0.2M
1000 01M
900

avr. 2021 juil. 2021 oct. 2021 janv. 2022 avr. 2022 juil. 2022

Figure 6B: Highlight of the mid-January to mid-February 2022 mortality peak, in relation to booster
(3rd doses) delivery, in NSW (Australia). All-cause mortality by week (light-blue) and booster
doses delivered by week (black) from 2021 to 2022. Both mortality and booster delivery are for
NSW. (Data sources: Australian Bureau of Statistics (2022a); and
https://www.covidl9data.com.au/vaccines, consulted on 14 December 2022.)
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ACM/w, Victoria, 2021-2022
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Figure 6C: Highlight of the mid-January to mid-February 2022 mortality peak, in relation to booster
(3rd doses) delivery, in VIC (Australia). All-cause mortality by week (light-blue) and booster doses
delivered by week (black) from 2021 to 2022. Both mortality and booster delivery are for VIC. (Data
sources: Australian Bureau of Statistics (2022a); and https://www.covid19data.com.au/vaccines,
consulted on 14 December 2022.)

ACM/w, Queensland, 2021-2022
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Figure 6D: Highlight of the mid-January to mid-February 2022 mortality peak, in relation to booster
(3rd doses) delivery, in QLD (Australia). All-cause mortality by week (light-blue) and booster doses
delivered by week (black) from 2021 to 2022. Both mortality and booster delivery are for QLD.
(Data sources: Australian Bureau of Statistics (2022a); and
https://www.covidl9data.com.au/vaccines, consulted on 14 December 2022.)
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The integrated excess mortality in the 7-week-duration peak, relative to its baseline, is
approximately 2,600 deaths, compared to approximately 9.4 million booster doses
delivered over the duration of the mortality peak. This corresponds to a vaccine injection
fatality ratio (VIFR) of approximately 0.03 %, which in turn is not too different from the
VIFR of 0.008 % for 65+ year old USA subjects injected with the Janssen vaccine,
calculated from the Vaccine Adverse Event Reporting System (VAERS) data by Hickey
and Rancourt (2022) (their Table 1).

An alternative hypothesis for the 7-week-duration mortality peak would be that it was
caused by an Australian summer heatwave affecting Eastern Australia. This hypothesis
is not tenable with the climatic and mortality data, which we demonstrate in Appendix 2.

For the following reasons (presented as numbered points), taken together, we conclude
that the 16-month (mid-April 2021 through August 2022) sustained regime of large
excess all-cause mortality in Australia may largely or predominantly be caused by its

vaccine rollout, including the booster (3rd doses).

1 - There is a clear temporal association between the new regime of heightened
all-cause mortality and the vaccine rollout, whereas Australia did not have detectable
excess mortality up to the start of the rollout, during 13 months of a pandemic that was
declared by the WHO on 11 March 2020. (Figures 1, 2, 4 and 6; and Appendix 1)

2 - The excess mortality in the vaccination period (mid-April 2021 through August 2022)
for Australia (all ages) is 31,000 (+1,000) deaths (Figure 1A), which is more than twice
the total number of deaths registered as being from or with COVID-19 (14,014 deaths, 1
January 2020 through week ending 29 August 2022; WHO, consulted 15 December
2022, https://covid19.who.int/region/wpro/country/au).
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Note that the percentage of total COVID-19-assigned deaths that are “with COVID-19”
(rather than “from COVID-19") varies between approximately 10 % and 30 %, in the
period January 2022 through August 2022 (Australian Bureau of Statistics, 2022b; their
figure entitled “Proportion of deaths from and with COVID-19 during the Omicron wave”,
and see “Proportion of deaths from and with COVID-19 during the Omicron wave by
state of registration”). Here, death “from COVID-19” means that COVID-19 is assigned
as “the underlying cause of death as the disease or condition that initiated the train of
morbid events leading to death”, whereas other diseases and conditions reported as
contributing to death are “referred to as associated causes” (Australian Bureau of
Statistics, 2022c). In fact, 95.4 % of deaths “from COVID-19” in Australian death
certificates had non-COVID-19 “causal sequences of events” and/or “pre-existing
chronic conditions” (Australian Bureau of Statistics, 2022c; their table entitled “Number
of deaths due to COVID-19 that has associated conditions”).

The question is unavoidable: Why would Australians suddenly (at the start of the
vaccine rollout) start dying in excess of something mostly if not entirely other than
COVID-19, after 13 months of a declared pandemic during which there was no

detectable excess all-cause mortality?

3 - The mean VIFR in the vaccination period (mid-April 2021 through August 2022) for

Australia, therefore, would be:
31 K deaths / 62 M vaccine doses® = 0.05 %

which is larger than the vIFR of 0.008 % for 65+ year old USA subjects injected with the
Janssen vaccine, calculated from the VAERS data (Hickey and Rancourt, 2022; their
Table 1), and smaller than the estimated 1 % calculated for the excess mortality event

in India (Rancourt, 2022), and for excess mortality peaks for several Southern states of

! Cumulative COVID-19 vaccine doses administered: All doses, including boosters, are counted
individually; administered 14 April 2021 through 25 August 2022, 63.01M - 1.36M = 62M. Our World in
Data, accessed 16 December 2022: https://ourworldindata.org/explorers/coronavirus-data-
explorer?facet=none&lInterval=Cumulative&Relative+to+Population=false&Color+by+test+positivity=false
&country=—AUS&Metric=Vaccine+doses
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the USA (Rancourt et al., 2022). As such, the 0.05 % estimated mean VIFR for Australia

is within an expected range for real-world circumstances.

4 - In addition to the above-described vaccination-period regime of all-cause mortality
(mid-April 2021 through August 2022), there is a prominent peak in all-cause mortality
from mid-January to mid-February 2022, having a full duration of seven weeks, which is
synchronous with a large burst in COVID-19 vaccine dose delivery (Figures 1, 3B, 4 and
6). The said large burst in vaccine dose delivery was the rollout of the booster (3rd

doses) in Australia (Figures 5 and 6).

We stress that Figure 6, showing a high degree of synchronicity (in both position and
width) between the mid-January to mid-February 2022 all-cause mortality peak and the
booster (3rd doses) delivery pattern, with the booster delivery surge generally leading
the mortality surge by approximately 1 week, represents strong evidence for a causal

relation; the strongest we have seen in all-cause mortality data.

5 - The said prominent peak in all-cause mortality from mid-January to mid-February
2022 has an integrated excess mortality in its 7-week duration, relative to its baseline, of
approximately 2,600 deaths, compared to approximately 9.4 million booster doses
delivered over the duration of the mortality peak. This corresponds to a calculated vIFR

for the specific mortality peak:
2.6 K deaths / 9.4 M vaccine doses® = 0.03 %

which is comparable in value to that obtained (0.05 %) for the mean VIFR in the
vaccination period (mid-April 2021 through August 2022) for Australia.

% Estimated using cumulative COVID-19 vaccine doses administered: All doses, including boosters, are
counted individually; administered 8 January 2022 through 21 February 2022, 53.4M - 44.0M = 9.4M. Our
World in Data, accessed 16 December 2022: https://ourworldindata.org/explorers/coronavirus-data-
explorer?facet=none&Interval=Cumulative&Relative+to+Population=false&Color+by+test+positivity=false
&country=—AUS&Metric=Vaccine+doses
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6 - The impact of the rollout would be sudden, as observed (Figures 1, 2, 4A and 6; and
Appendix 1), because Australia prioritized elderly, disabled and aboriginal residents

(Australian Government - Department of Health and Aged Care, 2021).

7 - The step-wise increase in all-cause mortality, into the regime of excess all-cause
mortality (mid-April 2021 through August 2022) occurs simultaneously in mid-April 2021
across all of Australia, in the eight states (see Appendix 1), rather than showing any
distribution of starting times, which would be compatible with a spreading infectious
disease seeding different regions at different times and spreading at different rates

depending on regional differences of social and health conditions.

In this regard, theoretical models of spreading and emerging pandemics show high
sensitivity of dynamic outcomes to seeding, societal population size, and inferred social
and health conditions (Parham and Michael, 2011; Hasegawa and Nemoto, 2016; Ma et
al., 2022).

8 - The VAERS data of the USA unambiguously shows excess all-cause deaths
immediately following injections with each of the three types of COVID-19 vaccines
used in the USA, with a prominent peak within 5 days of injection and an exponentially
decaying excess mortality extending 2 months following injection (Hickey and Rancourt,
2022; see their Figs. S3 through S5). The integrated mortality by number of injections
following injection (injection toxicity or VIFR) increases exponentially with age, as does
the batch to batch variability of toxic effect (Hickey and Rancourt, 2022; see their

Fig. S6). The latter observations of exponential increases with age mean that the

injections represent fatal challenges in proportion to frailty of the subject.

9 - Detailed histopathological and immunohistochemical autopsy studies have
demonstrated that the COVID-19 vaccines are causes of death, both in otherwise
healthy subjects and in elderly subjects with comorbidities (Choi et al., 2021; Schneider
et al., 2021; Sessa et al., 2021; Gill et al., 2022; Morz, 2022; Schwab et al., 2022;
Yoshimura et al., 2022).
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10 - The Australian Government interprets both test results (cases) and the mortality as

occurring in four “waves”, which it describes by time period as follows (Australian
Bureau of Statistics, 2022b):

“Wave 1: as occurring between March and May 2020. The predominant variant during
Wave 1 was the original virus strain.

Wave 2: as occurring between June and November 2020. Wave 2 predominantly
occurred in Victoria. The variant during Wave 2 was the original virus strain.

Delta wave: as occurring between July and December 2021.

Omicron wave: as occurring during 2022 (until the end of September 2022). Due to the

length of this wave and the higher number of deaths [...].”

We have not found any study establishing a scientific basis for the Australian

Government’s assignation of these waves. Furthermore, the said Government’s

assignation is irreconcilable with:

the absence of detected excess mortality in March-May 2020 (Figure 1; and
Appendix 1),

the absence of detected excess mortality in Australia (Figure 1A) and in Victoria
(Figure 4A) in the period June-November 2020 (and see Appendix 1),

a Delta-variant wave (July-December 2021) that would have missed both the
mid-April 2021 step-wise surge in excess all-cause mortality and the 7-week-
duration mid-January to mid-February 2022 peak in excess all-cause mortality,
and

an Omicron-variant wave (2022) that would have caused two distinct and
prominent features in excess all-cause mortality, namely the mid-January to
mid-February 2022 7-week-duration peak and the large surge that followed
starting in May 2022 (Figure 1A).

The official interpretive situation is similar, although less sophisticated, to that employed

by Dhar et al. (2021) who postulated that the April-July 2021 “second wave” event in

Delhi (the capital city of India) was due to the Delta variant, which would have quickly
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swept Delhi to become predominant because it would have higher transmissibility and
larger immune escape than concomitantly circulating variants. However, Dhar et al.
estimate the needed characteristics of Delta by fitting a model to the epidemiological
data and to the variant predominance estimated by genomic measurements from small
non-randomized cohorts. Leaving aside the large known and unknown uncertainties
throughout their exercise, basically, the inferred characteristics of Delta are obtained by
fitting to the data, rather than being independently measured in a controlled clinical trial.
Under such circumstances, the mortality event creates an illusion of the needed Delta

for Delhi, but an actual Delta cannot be concluded to have caused the mortality event.

Likewise, the Australian Government’s assignation of COVID-19 waves for Australia is
merely a naming exercise of reported test results (case statistics), coupled to sparse
and unreliable genomic measurements (Australian Government - Department of Health
and Aged Care, 2022). The Australian Government’s assignation is contradicted by

hard data of all-cause mortality by time.

11 - A similar synchronicity between vaccine dose delivery and excess all-cause
mortality is observed in connection with the so-called “vaccine equity” campaigns in the
USA. An anomalous fall-2021 peak was interpreted as being caused by the vaccines,
and is prominent in the 25-64 years age group in 21 states of the USA, most notably
including Alabama, Mississippi, Georgia, Florida and Louisiana (Rancourt et al., 2022).

The data for Mississippi is shown below (Figure 7).
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ACM/w, Mississippi, 25-64 age group, 2019-2022
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Figure 7: Rancourt et al. (2022), their Fig. 11B. All-cause mortality by week (light-blue), cumulated
number of people with at least one dose of vaccine (dark-blue), cumulated number of fully
vaccinated people (orange) and cumulated number of people with a booster dose (yellow) by week
from 2019 to 2022, for 25-64 years age group in Mississippi. Data are displayed from week-1 of
2019 to week-5 of 2022.

In the study by Rancourt et al. (2022), it was concluded that significant (detectable by
all-cause mortality) vaccine-induced mortality occurred primarily among fragile groups,
characterized by high degrees of poverty, disability, obesity, diabetes, and high
medication rates. The vaccine injection was seen as an additional challenge, often

accelerating and causing death in residents with comorbidities.

12 - Another example of probably causal synchronicity between a rapid COVID-19
vaccine rollout prioritizing elderly, frail and disabled residents and large excess
all-cause mortality is that of India (Rancourt, 2022). In that case, the early rollout of the
vaccine in April-July 2021 was devastating, causing the deaths of approximately 3.7
million residents, on administering approximately 350 million doses of the vaccine (in a
population of 1.39 billion). This corresponds to an effective VIFR (per-dose toxicity) of
approximately 1 %. It is also approximately the same VIFR (1 %) as is consistent with

the anomalous fall-2021 peak in excess all-cause mortality occurring in high-poverty
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states of the USA, which was interpreted as being caused by the vaccine (Rancourt et

al., 2022; and see the data for Mississippi shown in Figure 7).

Clearly, frail residents are susceptible to being fatally harmed by the injection and
should be protected against state-run injection campaigns implemented without
stringent individual clinical risk assessment. It appears that the population-wide COVID-
19 vIFR can be as large as 1 % (India, Southern USA states), and is approximately
0.05 % in Australia.

Both India and Australia had virtually no detectable excess all-cause mortality after a
pandemic was declared by the WHO, until their respective COVID-19 vaccine rollouts,
which makes the synchronicity association relatively easy to assign.

13 - Two more examples of synchronicity between a rapid COVID-19 vaccine rollout
prioritizing elderly and vulnerable residents and large excess all-cause mortality occur
for Michigan, USA (Rancourt et al., 2022) and Ontario, Canada.

Key figures for Michigan, USA are as follows (Figure 8). The COVID-19 VIFR in the

main rollout of the vaccine in Michigan is comparable in value to that for the vaccination
period for Australia (0.05 %).
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ACM/w, Michigan, 25-64 age group, 2019-2022
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Figure 8: All-cause mortality by week (light-blue), cumulative number of people with at least one
dose of vaccine (dark-blue), cumulative number of fully vaccinated people (orange) and
cumulative number of people with a booster dose (yellow) by week from 2019 to 2022, and by age
group for Michigan, USA. Data are displayed from week-1 of 2019 to week-5 of 2022. Upper panel:
(Rancourt et al., 2022; their Figure 11G) Michigan, 25-64 years age group. For the 25-64 years age
group, the vaccination data is for the 18-64 years age group. Lower panel: (Rancourt et al., 2022;
their Figure 11H) Michigan, 65+ years age group. The discontinuous breaks in cumulative number
of vaccinated individuals are artifacts.
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A key figure for Ontario, Canada is as follows (Figure 9).

ACM/w, Ontario, 65-84 age group, 2010-2022
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ACM/w, Ontario, 65-84 age group, 2019-2022

® Deaths ® At least 1 dose ®Fully vaccinated ®Booster

1400 3,0M
1300 2.5M
z
n
1200 3
=
20M -z
Z
_§ 1100 5
= 1,5M @
1] =}
@ E
o 1000 3
c
o
1,0M %
900 E
E
=
]
800 0,5M
Jjuil. 2019 janv. 2020 Jjuil. 2020 janv. 2021 juil. 2021 janv. 2022

Figure 9: All-cause mortality by week (light-blue), cumulative number of people with at least one
dose of vaccine (dark-blue), cumulative number of fully vaccinated people (orange) and
cumulative number of people with a booster dose (purple) by week from 2010 to 2022 (upper
panel), and from 2019 to 2022 (lower panel), in the province of Ontario, Canada. Both mortality and
vaccination are for the age group 65-84 years. (Rancourt et al., manuscript in preparation)
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A clear non-seasonal peak is seen in this age group (65-84 years) in Ontario, which is

synchronous with the COVID-19 vaccine rollout to this age group (Figure 9); and a

particularly large and sharp mortality peak is synchronous with the booster rollout to this

age group the following winter season (Figure 9). Here, again, the corresponding

COVID-19 vIFRs are comparable in value to that for the vaccination period for Australia

(0.05 %).

As further discussion, we make the following observations and comments.

As outlined above, less than and approximately half of the excess deaths of all causes
in the vaccination period are deaths registered as COVID-19 deaths. The COVID-19-

registered deaths have the following properties (Australian Bureau of Statistics, 2022c):

Attribution of death “from COVID-19" versus “with COVID-19" is based
on a qualitative evaluation susceptible to bias

95.4 % of deaths “from COVID-19" in Australian death certificates had
non-COVID-19 “causal sequences of events” and/or “pre-existing
chronic conditions”

The deaths statistics by age and sex are typical of all-cause old-age
deaths statistics in Western societies

The three “most commonly certified acute disease outcomes of
COVID-19” were: pneumonia (61.4 %), respiratory failure (15 %), and
other infections (11.2 %)

The three most common pre-existing conditions in certified “with
COVID-19” deaths were: chronic cardiac conditions (39.0 %), dementia
(30.5 %), and chronic respiratory conditions (17.8 %)

Therefore, it is reasonable to infer that the vaccine injections caused death by providing

an additional and significant challenge to already chronically frail or vulnerable subjects,
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and that COVID-19 itself may not have provided a significant contribution, as we already
demonstrated for the Southern states of the USA (Rancourt et al., 2022), and as is

apparent for India (Rancourt, 2022).

In this context, and given the “most commonly certified acute disease outcomes of
COVID-197, it is important to note that Australia, like virtually all Western jurisdictions,
dramatically reduced its antibiotic prescriptions after a pandemic was declared by the
WHO (Gillies et al., 2021; Rancourt et al., 2022). This would mean that, not only were
chronically frail residents challenged with the toxic injections, but they may also not

have been provided the normal treatments against respiratory bacterial infections.

Finally, we note that there is starting to be some acknowledgement in the mainstream
media suggesting that vaccine harm in Australia may be much larger than generally
admitted by the medical establishment. The recent public testimony and submission to
Parliament of former federal MP and former Australian Medical Association (AMA)
president Dr. Kerryn Phelps stands out in this regard (Chung, 2022).

In conclusion, the declared pandemic would have had to entirely spare Australia any
detectable deaths for more than a year, while it raged in many other places around the
world, before it showed any virulence, suddenly in mid-April 2021, when vaccines
coincidentally were being rolled out to the elderly and most vulnerable. In addition, a
sharp peak in all-cause mortality (mid-January to mid-February 2022) would be
synchronous with the rapid deployment of the vaccine booster (3rd doses) purely by

coincidence, without any explanation (plausible or not) being provided.

On the contrary, our analysis leads us to conclude that the excess mortality in the

vaccination period (31+1 thousand deaths, mid-April 2021 through August 2022; 14 %
larger all-cause mortality than in recent pre-vaccination periods of same time duration;
62 million administered vaccine doses), which is more than twice the deaths registered

as from or with COVID-19, and the sharp peak in all-cause mortality (mid-January to
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mid-February 2022; 2,600 deaths), which is synchronous with the rapid rollout of the
booster (9.4 million booster doses, same time period) are causally associated with the
COVID-19 vaccine. We give thirteen numbered arguments as to why we make this

conclusion.

The corresponding vaccine injection fatality ratio (VIFR) is approximately 0.05 %, which
is intermediate between the value from VAERS for ages 65+ years with the Janssen
vaccine in the USA (0.008 %) and the value for India’s vaccine rollout and for Southern

states of the USA subjected to “vaccine equity” campaigns (1 %).
Of course, this is diametrically opposite to the proposal that the COVID-19 vaccine

would have saved any lives; a proposal that is not substantiated by extensive study of

all-cause mortality data (Rancourt et al., 2022).
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APPENDIX 1:

Step-wise increase in all-cause mortality occurs in
mid-April 2021 in all the states in Australia

Here, we show the all-cause mortality data for Australia and for each state of Australia
(as labelled in the panels of Figure A1-F1), and including the 72-week vaccination
period integrations, described in the present article.

We also provide the following table of corresponding vaccine-period excess mortalities.

Table A1-T1: Integrated all-cause mortality (72 weeks), differences and ratios

State Population | Baseline | Vaccination | EXxcess Excess Excess
(M) (2022) Period Period (K) (K) /Baseline deaths
(K)* (%) (per
100K)
Australia 25.979 224.5 2555 31.0 13.8 119
NSW 8.154 74 83.6 9.6 13.0 120
VIC 6.614 56.0 63.85 7.85 14.0 120
QLD 5.322 43.9 51.1 7.2 16.4 135
SA 1.821 19 21.3 2.3 121 130
WA 2.785 20.8 23.2 24 115 86
TAS 0.572 6.2 7.0 0.8 12.9 140
NT 0.251 1.57 1.67 0.1 6.4 40
ACT 0.457 3.22 3.74 0.52 16.1 110

* The baseline-period 72-week-integrated mortality was estimated from an inspection of the
values on the graphs (Figure A1-F1) for periods prior to the vaccination period, in such a way as
to be representative of the value that would be predicted in the absence of the vaccination
campaign and its effects.
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Figure A1-F1 (containing 9 panels) follows.

ACM/w, Australia, 2015-2022

4200 260K
4000 255K
250K
3800
o
i=]
245K 5
3600 2
x
L4
E 240K ¢
w
< 3400 o
3 ~
3 235K 4
[=1
3200 . @
/ 230K &
@
( =}
3000 4 A f 225K
» ' ‘
1
2600 215K
2016 2017 2018 2019 2020 2021 2022
ACM/w, New South Wales, 2015-2022
1500 84K
1400 82K
1300 80K 2
5
[=1
-
2 1200 78K 2
2 S
= N
o ~
31100 J 76K @
[=1
2
=
@
[m]

1000 'm’ w I""" | 11‘. 74K
900 L“ ’ 72K
\

800 70K
2016 2017 2018 2019 2020 2021 2022

33



153

ACM/w, Victoria, 2015-2022
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ACM/w, South Australia, 2015-2022
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ACM/w, Tasmania, 2015-2022
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ACM/w, Australian Capital Territory, 2015-2022
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APPENDIX 2:

Mid-January to mid-February 2022 mortality peak not
caused by a heatwave

This appendix is concerned with the question of whether the mid-January to
mid-February 2022 prominent peak in all-cause mortality in Australia (occurring in NSW,

VIC and QLD; see Appendix 1) can be due to a climatic heatwave.

It is important to address this question because sharp all-cause mortality peaks are
often associated with exceptional summer heatwaves in mid-latitude countries (e.g.

Rancourt et al., 2022, cited in the present article).

The most important heatwave to affect Eastern Australia over more than the last three
decades was in 2009. The government report [Australian Government - Bureau of
Meteorology, Special Climate Statement 17: The exceptional January-February 2009
heatwave in south-eastern Australia (issued 4 February 2009, updated 12 February

2009), http://www.bom.gov.au/climate/current/statements/scs17d.pdf , accessed 18

December 2022] describes it this way:

“An exceptional heatwave affected south-eastern Australia during late January and early
February 2009. The most extreme conditions occurred in northern and eastern
Tasmania, most of Victoria and adjacent border areas of New South Wales, and
southern South Australia, with many records set both for high day and night time
temperatures as well as for the duration of extreme heat.

There were two major episodes of exceptional high temperatures, from 28-31 January
and 6-8 February, with slightly lower but still very high temperatures persisting in many
inland areas through the period in between.”

This exceptional 2009 heatwave did not cause any significant peak in all-cause
mortality, as shown in Figure A2-F1, below. In fact, heatwaves essentially do not cause
peaks in all-cause mortality in Australia, presumably because it's always hot in the
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summers. Figure A2-F1 does not show any peaks, 1980-2022, which could be

interpreted as summer heatwave peaks.

Also, there are no Australian Government, Bureau of Meteorology, Special Climate
Statements (SCSs) 2006-2022, which can be interpreted to be associated with or
similarly associated to the mid-January to mid-February 2022 prominent peak in
all-cause mortality occurring in Eastern Australia (NSW, VIC, QLD) (see Appendix 1).
See the list of SCSs here: http://www.bom.gov.au/climate/current/statements/ . Archived
on 18 December 2022 here: https://archive.vn/WDIPA

And the Australian Government, Bureau of Meteorology, “Monthly Weather Review,
Australia, January 2022” report [Product code IDCKGC1ARL1. Prepared on 27 April

2022. http://www.bom.gov.au/climate/mwr/aus/mwr-aus-202201.pdf | makes no mention

of any climate or weather event that could be associated with the mid-January to
mid-February 2022 prominent peak in all-cause mortality occurring in Eastern Australia
(NSW, VIC, QLD).

That the 2022 all-cause mortality peak of concern is not due to a heatwave is again
corroborated by the fourteen maximum daily temperature maps for Australia shown
below, for the years and dates as indicated on the maps.

[Source: http://www.bom.gov.au/climate/ . Specifically:

http://www.bom.gov.au/jsp/awap/temp/rmse archive.jsp?map=maxave&period=daily&y
ear=2022&month=1&day=12 ]

The mid-January to mid-February 2022 prominent peak in all-cause mortality occurring
in Eastern Australia (NSW, VIC, QLD) (see Appendix 1) — seen in Figure A2-F1 and in
Figures 1, 2, 4A and 6 of the present article — is not due to any climate, weather or

temperature event or anomaly.
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ACM/m, Australia, 1980-2022
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Figure A2-F1: All-cause mortality in Australia, all ages, from January 1980 through August 2022.
Light-blue: All-cause mortality by month, left y-scale. Dark-blue: Integrated all-cause mortality
over successive and non-overlapping 16-month periods (May 2021 through August 2022, for most
recent period), right y-scale. Each point is positioned on the x-axis at the 1st month of its 16-
month integration period. The labelled vertical line shows January 2009, which had a record-
breaking heatwave and virtually no associated increase in mortality. February has lower mortality
because it generally has only 28 days. (Data source: Australian Bureau of Statistics (2022a) for
2015-2022; United Nations (2022) for 1980-2014.)
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ABSTRACT: India experienced a unique, sudden, unprecedented and
extraordinarily large excess all-cause mortality event in April-July 2021,
which is not adequately explained as a “second wave” or as being
caused by a new variant of concern. After an overview of four recently
published studies that have quantified the April-July 2021 excess all-
cause mortality event, we give ten numbered arguments as to why we
conclude that the extraordinary mortality event was caused by India’s
vaccine rollout in its early stages. Therefore, it appears that the early
rollout of the vaccine in India in April-July 2021 was devastating,
causing the deaths of approximately 3.7 million residents, on

administering approximately 350 million doses of the vaccine.

India experienced an extraordinary excess-mortality shock in April through July 2021,

not seen in any other country in the world.

The mortality by week rose to almost 700% of its baseline value in April 2021, based on
90 municipalities in the state of Gujarat (Acosta et al. 2022; their Fig. 2), and the
mortality by month rose to almost 400% of its baseline value in July 2021, based on 19
Indian states, 1.27 billion population (Leffler et al. 2022; their Fig. 1). To be clear, this
represents all-cause mortalities that are 7-fold (by week) and 4-fold (by month) greater,

respectively, than the pre-Covid (2019) all-cause mortalities in India.

This 4-month April-July 2021 excess mortality event in India is described in four
independent studies published in leading medical journals (Acosta et al. 2022; Jha et al.
2022; Leffler et al. 2022; Lewnard et al. 2022); and it represents the great majority of
excess all-cause deaths for the entire Covid period examined since a pandemic was
declared by the World Health Organization on 11 March 2020.
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Given the extraordinary characteristics of the 4-month April-July 2021 excess mortality
event in India, it is useful to reproduce key figures from the said studies, in order to

grasp its significance and nature, as follows.
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Fisure 1. Per capita all-cause mortality in India by month, 2019 to 2021, based on 13 states and two union territories, as described in the
Methods section. This figure appears in color at www.ajtmh.org.

Figure 1: Leffler et al. (2022), using 19 Indian states, 1.27 billion population, their Fig. 1.
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Fig. 3. Reported deaths from all causes in India's Ministry of Health and Family Welfare Management Information System covering 0.2 million health
facilities nationally, 2020 and 2021, versus average of 2018-2019, by month. The inset shows the increases in selected states and nationally for the
April-May 2021 relative to the 2018-2019 averages for the same months of comparison. Table S6 provides the input data.

Figure 2: Jha et al. (2022), using 0.2 million health facilities nationally, their Fig. 3. This is
essentially the same figure as Fig. 1 in Deshmukh et al. (2021).
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Fig. Z Monthly reporting of deaths as COVID (including COVID-associated) and non-COVID by
month for 2019 to 2021 in a substudy of 57000 adults in 13,500 households within the COVID
Tracker survey (2). Table 53 provides the input data. (A) 2020 deaths; (B) 2021 deaths.

Figure 3: Jha et al. (2022), using a survey study of 57 thousand adults, their Fig. 2.
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Fig 1. Model fit for weekly death counts. Model fit for weekly death counts amalgamated from multiple municipalities in Gujarat, India. The gray data points are
weekly death counts, the dashed-vertical line represents the onset of Covid-19, the blue curve represents the expected weekly death counts based on historical data, and
the red curve represents the smooth observed weekly death counts during Covid-19.
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Figure 4: Acosta et al. (2022), using death certificates from 90 municipalities in the Indian
state of Gujarat, their Fig. 1.
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Fig 2. Estimated percent change in mortality from average in Gujarat, India, from March 2020 to April 2021. Estimated percent change in mortality from average
in Gujarat, India, from March 2020 to April 2021, The solid-curves represent percent changes from average mortality for each group, 95% confiden ce intervals were
omitted for better readability. The point estimate and corresponding 95% confidence intervals for April 16, 2021, the week of peak excess mortality, are displayedin
text on the right and highlighted with a data point.
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Figure 5: Acosta et al. (2022), using death certificates from 90 municipalities in the Indian
state of Gujarat, their Fig. 2. Based on mortality by week. (Upper) Full figure. (Lower)
Selected enlargement.
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Figure 6: Lewnard et al. (2022), in the Chennai district, India, their Fig. 1. (Red line: 14-day
moving average estimates of daily mortality in 2020 and 2021 (observed deaths),
corrected for lagged reporting based on 2019 observations.)

When such a large, unique, and sudden feature in mortality of all causes occurs in any
jurisdiction, it demands thorough investigation, if the cause is not empirically obvious,
such as a massive earthquake or a genocidal military attack. This holds even during a
declared pandemic, given the unique, sudden, unprecedented and large-magnitude

nature of the event in India.

All of the above-cited authors who have reported on the 4-month April-July 2021 excess
mortality event in India have referred to the event as being India’s “second wave” and
have used their all-cause mortality evaluations to infer that COVID-19 mortality is
potentially largely underestimated by India’s official Covid-death statistics.

In this author’s opinion, if that was India’s “second wave” then, by comparison, India
virtually did not have a “first wave”, and essentially did not have a death-causing
pandemic prior to April 2021.
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None of the above-cited authors who have reported on the 4-month April-July 2021
excess mortality event in India have mentioned the remarkable coincidence that the
said excess mortality event coincides in time with India’s vaccine rollout, starting on 1
March 2021 with those 60 years and older and those over 45 years and having
“comorbidities” (among 20 listed comorbidities) (The Economic Times, 24 February
2021; Ministry of Health and Family Welfare, Government of India, 2021), extended to
all residents over 45 years on 1 April 2021; and coinciding in time with the government’s
4-day Teeka Utsav ("Vaccine Festival") from 11 to 14 April 2021, in which some 100
million vaccine doses were administered by its completion: “Elderly people or those who
may not be much educated should be helped in getting the vaccine”, Prime Minister
Modi said (Mint, 11 April 2021).

To appreciate India’s vaccine rollout, its official statistics are a reference, as follows.
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For the following reasons (presented as numbered points), taken together, we conclude
that the 4-month April-July 2021 surge in excess all-cause mortality in India may largely

or predominantly have been caused by the vaccine rollout in its early stages.

1 - The mortality event is unique to India, sudden, unprecedented, massive and
synchronous with India’s vaccine rollout to the most elderly and most fragile
(comorbidity) residents (Figures 1-8).

2 - By comparison, in relative terms, there were no significant mortality events and there
was no significant cumulative excess mortality prior to April 2021, during more than a

year of the declared pandemic (Figures 1-6).

The declared pandemic would have had to spare India for more than a year, while it
raged in many other places around the world, before it showed a dramatic many-fold
increase in virulence, suddenly in April-July 2021, when vaccines coincidentally were

being rolled out to the elderly and those having comorbidities.

3 - The early rollout of the vaccine was not executed following the original ambitious
plan but instead was at first delayed by implementation difficulties and then boosted by
an ad hoc government intervention (Prime Minister Modi’'s 11-14 April 2021 Teeka
Utsav, "Vaccine Festival"), which encouraged accelerated blanket and penetrating

delivery to the poor, uneducated, and those presumed to be most in need.

4 - A similar synchronicity between increased vaccination associated with a government
intervention to accelerate vaccine delivery and an anomalous surge (peak) in all-cause

mortality is observed in connection with the so-called “vaccine equity” campaigns in the
USA. An anomalous fall-2021 peak was interpreted as being caused by the vaccines,

and is prominent in the 25-64 years age group in 21 states of the USA, most notably

11
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including Alabama, Mississippi, Georgia, Florida and Louisiana (Rancourt et al., 2022).

The data for Mississippi is shown below (Figure 9).

ACM/w, Mississippi, 25-64 age group, 2019-2022
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Figure 9: Rancourt et al. (2022), their Fig. 11B. All-cause mortality by week (light-blue),
cumulated number of people with at least one dose of vaccine (dark-blue), cumulated
number of fully vaccinated people (orange) and cumulated number of people with a
booster dose (yellow) by week from 2019 to 2022, for 25-64 years age group in
Mississippi. Data are displayed from week-1 of 2019 to week-5 of 2022.

In the study by Rancourt et al. (2022), it was concluded that significant (detectable by
all-cause mortality) vaccine-induced mortality occurred primarily among fragile groups,
characterized by high degrees of poverty, disability, obesity, diabetes, and high
medication rates. The vaccine injection was seen as an additional challenge, often

accelerating and causing death in residents with comorbidities.

5 - The magnitude of the April-July 2021 excess all-cause mortality event (normalized
by population) is highly heterogeneous from region to region in India (above-cited
references). This suggests that the net regional excess mortality is related to the
underlying heterogeneity of health status, and to differences in health-status group

selection, which were actually vaccinated in a region; rather than being due to a given

12
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infection fatality ratio (and its age profile) for the rapid spread of an infectious disease,

applied to all regions similarly.

6 - The April-July 2021 excess all-cause mortality event occurs simultaneously across
India, as do the national vaccine rollout and Prime Minister Modi’'s "Vaccine Festival"
intervention, rather than showing any distribution of starting times, which would be
compatible with a spreading infectious disease seeding different regions at different
times and spreading at different rates depending on regional differences of social and

health conditions.

7 - The April-July 2021 excess all-cause mortality, at least initially, is significantly larger,
on a mortality-baseline-percent basis for mortality by week, for 40-64 year old residents
than for 65+ year old residents (~880% vs ~570%) (Figure 5). This is incompatible with
controlled clinical studies and empirical observations, which find that infection fatality
probability of COVID-19-assigned death is exponential with age (Bonanad et al., 2020;
Goldstein and Lee, 2020; Santesmasses et al., 2020; Bauer et al., 2021; Elo et al.,
2022; Sorensen et al., 2022). However, the age-dependence behaviour is similar to
what is observed for the vaccination period of the Covid period compared to the pre-

vaccination Covid period in the USA (Rancourt et al., 2022; see their Fig. 17).

8 - The Vaccine Adverse Event Reporting System (VAERS) of the USA unambiguously
shows excess all-cause deaths immediately following injections with each of the three
types of COVID-19 vaccines used in the USA, with a prominent peak within 5 days of
injection and an exponentially decaying excess mortality extending 2 months following
injection (Hickey and Rancourt, 2022; see their Figs. S3 through S5). The integrated
mortality by number of injections following injection (injection toxicity) increases
exponentially with age, as does the batch to batch variability of toxicity (Hickey and
Rancourt, 2022; see their Fig. S6). The latter observations of exponential increases with
age mean that the injections represent fatal challenges in proportion to frailty of the

subject.

13
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9 - Detailed histopathological and immunohistochemical autopsy studies have
demonstrated that the COVID-19 vaccines are causes of death, both in otherwise
healthy subjects and in elderly subjects with comorbidities (Choi et al., 2021; Schneider
et al., 2021; Sessa et al., 2021; Gill et al., 2022; Mérz, 2022; Schwab et al., 2022).

10 - We have not found any study establishing that there was a sudden rise (and fall) of
any disproportionately virulent variant of concern that would have been synchronous
with or swept through and caused the April-July 2021 excess all-cause mortality event.
For example, Dhar et al. (2021) postulate that the April-July 2021 “second wave” event
in Delhi (the capital city of India) was due to the Delta variant, which would have quickly
swept Delhi to become predominant because it would have higher transmissibility and
larger immune escape than concomitantly circulating variants. However, Dhar et al.
estimate the needed characteristics of Delta by fitting a model to the epidemiological
data and to the variant predominance estimated by genomic measurements from small
non-randomized cohorts. Leaving aside the large known and unknown uncertainties
throughout their exercise, basically, the inferred characteristics of Delta are obtained by
fitting to the data, rather than being independently measured in a controlled clinical trial.
Under such circumstances, the mortality event creates an illusion of the needed Delta,

but an actual Delta cannot be concluded to have caused the mortality event.

In conclusion, it appears that the early rollout of the vaccine in April-July 2021 in India
was devastating, causing the deaths of approximately 3.7 million residents (Figure 1),
on administering approximately 350 million doses of the vaccine (in a population of 1.39
billion).

This corresponds to an effective vaccine fatality per dose ratio (per-dose toxicity) of
approximately 1%, which is approximately x100 the vaccine fatality per dose ratio for
the Janssen vaccine administered to 65+ year old residents of the USA, calculated from
the VAERS data (Hickey and Rancourt, 2021, see their Table 1). It is also

14
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approximately the same vaccine fatality per dose ratio (1%) as is consistent with the
anomalous fall-2021 peak in excess all-cause mortality occurring in high-poverty states
of the USA, which was interpreted as being caused by the vaccine: Rancourt et al.
(2022) and see the data for Mississippi shown in Figure 9.

Frail residents are susceptible to being fatally harmed on injection and should be
protected against overly enthusiastic or politically motivated state-run injection

campaigns implemented without stringent individual clinical risk assessment.
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Abstract

We make a quantitative comparison between the COVID-19 mortality statistics of the
Government of Canada (Public Health Agency of Canada; managed by the Chief Public
Health Officer) and calculated total excess all-cause mortality (ACM) (deaths from all
causes) for the Covid period. The claimed “COVID-19 deaths” mortality is almost double
the total excess ACM for the same period, which we find to be irreconcilable with reality.
We describe how these numbers have been uncritically used in public Government
communications, by leading media, and in a recent scientific article co-authored by
Canada’s Chief Public Health Officer, which claims that “without the use of restrictive
measures and without high levels of vaccination, Canada could have experienced [...]
almost a million deaths.” We conclude that the COVID-19 mortality statistics are
unreliable at best, and possibly meaningless.

Introduction

In Canada and in the world, there were virtually no reported deaths assigned to
COVID-19 prior to the 11 March 2020 World Health Organization (WHQO) declaration of
a pandemic. Likewise, no anomaly in all-cause mortality by time (day, week, month) can

be detected prior to the said declaration.*

The Government of Canada records “COVID-19 deaths” and reports the cumulative
value on a weekly basis, at its Public Health Agency of Canada “COVID-19
epidemiology update” dashboard.?

! Rancourt, D.G. (2020) “All-cause mortality during COVID-19: No plague and a likely signature of mass
homicide by government response”, ResearchGate, 2 June 2020.
https://doi.org/10.13140/RG.2.2.24350.77125 | archived at: https://archive.ph/PXhsg

% Government of Canada (2022) “COVID-19 epidemiology update”. Updated: 2022-10-03. https://health-
infobase.canada.ca/covid-19/ (accessed on 3 October 2022).
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Government of Canada officers and employees use the same cumulative “COVID-19

deaths” data in their peer-reviewed scientific articles (see below).
This brief report is about the irreconcilable discrepancy between the Government of

Canada’s numbers of “COVID-19 deaths” and rigorous evaluations of excess total

all-cause mortality (ACM) for the same time periods.

What the Canadian Government and legacy media say

Table 1 presents statements made by the Government of Canada and by leading

media, reporting cumulative “COVID-19 deaths”. The list is incomplete.

Table 1. COVID-19 death count statements

Statements by Canadian government and mainstream media regarding
COVID-19 deaths

# Statement Source

Government statements:

1 | “Table 1: 38,783 Deaths from coronavirus Ogden et al. (with Canada’s
disease 2019 [COVID-19] Observed as of April Chief Public Health Officer
24, 2022.” Theresa Tam), CCDR, 2022.3
2 | "COVID-19 cases deceased in Canada as of “COVID-19 epidemiology

September 23, 2022, 7 am ET (n=45,795 - This | update”, Government of
figure is based on cases for which a case report Canada (Public Health

form was received by the Public Health Agency of | Agency of Canada), Updated:
Canada from provincial or territorial partners.)" Sep4tember 23,2022, 8 am
ET.

3 Ogden NH, Turgeon P, Fazil A, Clark J, Gabriele-Rivet V, Tam T, Ng V. "Counterfactuals of effects of
vaccination and public health measures on COVID-19 cases in Canada: What could have happened?"
Canada Communicable Disease Report (CCDR) 2022;48(7/8):292—-302.
https://doi.org/10.14745/ccdr.v48i78a01

% https:/health-infobase.canada.ca/src/data/covidLive/Epidemiological-summary-of-COVID-19-cases-in-
Canada-Canada.ca.pdf (accessed on 27 September 2022).
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“COVID-19 cases deceased in Canada as of
April 1, 2022, 8 am EST (n=36,992 - This figure
is based on cases for which a case report form
was received by the Public Health Agency of
Canada from provincial or territorial partners.)

“COVID-19 epidemiology
update”, Government of
Canada (Public Health
Agency of Canada), Updated:
April 4, 2022, 9 am EST.®

Media statements:

4 | “Atleast 1 in 830 residents have died from the “Tracking Coronavirus in
coronavirus, a total of 45,263 deaths.” “Updated Canada: Latest Map and Case
Sept. 27, 2022" Count”, New York Times.®

5 | “THE LATEST ON SEPT. 23 [2022] . Newly “Coronavirus Tracker”, Global
confirmed COVID-19 cases have brought the News.’
national total to over 4.23 million cases and more
than 45,100 deaths.”

6 | “Atotal of 16,409 people [in Quebec] have died | “COVID-19 hospitalizations
from COVID-19 since the pandemic began.” down by 42 in Quebec”, CTV
“Updated Sept. 2, 2022 2:26 p.m. EDT” News.?

7 | “More than 43,500 Canadians have died from “Did a Conservative leadership
COVID-19.” “Thu., Aug. 25, 2022” hopeful compare COVID-19

vaccines to Nazi atrocities?
Leslyn Lewis rejects ‘cowardly’
accusation”, Toronto Star.’

8 | “Canada, meanwhile, has seen a total of 43,505 | “Tragic milestone’: 1M people

COVID-19-related deaths in the country since the
pandemic began, including 251 people who died
during the week of Aug. 7 to 13, according to the
latest available data from Health Canada.”
“Posted August 25, 2022 12:53 pm”

have died of COVID-19 so far
this year, WHO says”, Global
News.©

® Ibid. (accessed after 4 April 2022)
® https://www.nytimes.com/interactive/2021/world/canada-covid-cases.html | Archived:
https://archive.ph/puy6S (accessed on 27 September 2022).

" https://globalnews.ca/news/6649164/canada-coronavirus-cases/ (accessed on 27 September 2022).

® https://montreal.ctvnews.ca/covid-19-hospitalizations-down-by-42-in-quebec-1.6053545 (accessed on

27 September 2022).
o https://lwww.thestar.com/politics/federal/2022/08/25/did-a-conservative-leadership-hopeful-compare-
covid-19-vaccines-to-nazi-atrocities-leslyn-lewis-rejects-cowardly-accusation.html | Archived:

https://archive.ph/iTEjc (accessed on 27 September 2022).

10 https://globalnews.ca/news/9084719/covid-deaths-hit-one-million-who/ (accessed on 27 September
2022).
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9 | “43,583 deaths” “Last Updated Tuesday, July “Tracking every case of

19, 2022 12:15PM EDT” COVID-19 in Canada”, CTV
News.!

10 | “42,254 coronavirus-related deaths reported in “REUTERS COVID-19
the country since the pandemic began.” “Last TRACKER - Canada”,
updated July 15, 2022” REUTERS.?

11 | “At least 41,000 Canadians (13,000 people in “Kaplan-Myrth: Ontario
Ontario) have died from COVID-19 since the election — COVID-19 isn't
pandemic began. And, although we no longer see | over. Vote for the party that
it as headline news, people are still dying every will act on this reality”, Ottawa
day from COVID-19 in our own cities and rural Citizen.™
and remote areas.” “May 30, 2022”

12 | “Canada has reached another grim milestone: “Canada reaches a grim
40,000 COVID-19 deaths.” “PUBLISHED MAY milestone — 40,000 COVID-19
13, 2022 deaths”, The Globe and

Mail.**

13 | “At least 40,000 people across Canada have died | “Over 40,000 have died from
after contracting COVID-19 since the pandemic COVID-19 in Canada, but
began more than two years ago, according to hospitalizations are falling
provincial data, and more than 70 people are still | again”, Global News.*
dying per day.” “Posted May 13, 2022 9:56 pm”

14 | “The U.S. has experienced 302.93 deaths for “U.S. surpasses 1 million
every 100,000 people, per Johns Hopkins, a rate | COVID-19 deaths: A look at
significantly higher than in Canada, with 104.30 | the numbers”, CBC News.'®
deaths for every 100,000 people. Nearly 39,000
people have died in Canada.” “Posted: May 12,

2022 10:58 AM ET | Last Updated: May 12"

1 hitps://www.ctvnews.ca/health/coronavirus/tracking-every-case-of-covid-19-in-canada-1.4852102

gaccessed on 28 September 2022).
2 https://graphics.reuters.com/world-coronavirus-tracker-and-maps/countries-and-territories/canada/

gaccessed on 28 September 2022).
3 https://ottawacitizen.com/opinion/kaplan-myrth-ontario-election-covid-19-isnt-over-vote-for-the-party-

that-will-act-on-this-reality (accessed on 28 September 2022).

1 https://www.theglobeandmail.com/canada/article-canada-40000-covid-19-deaths/ | Archived:

https://archive.ph/v3wlr (accessed on 28 September 2022).

' https://globalnews.ca/news/8834765/covid-canada-40k-deaths-6th-wave/ (accessed on 29 September
2022).

18 https://www.cbc.ca/news/world/us-million-covid-deaths-1.6150574 (accessed on 28 September 2022).
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Clearly, these numbers are an integral part of the Government of Canada’s

communication campaign during the Covid period.

In addition, countless audio and video recorded interviews have media interviewers and
commentators advancing these and comparable large cumulative numbers of
“COVID-19 deaths”, typically to emphasize the seriousness of the declared pandemic,
and always implying that infection with the presumed SARS-CoV-2 virus was the

dominant or only medical factor causing the deaths.

The detailed time evolution of the cumulative number of “COVID-19 deaths” is available
at the Government of Canada (Public Health Agency of Canada) dashboard and its
csv-file download,'” and is represented in the following graph (Figure 1), in which the

time axis starts on 1 February 2020.

Cumulative COVID- 19 deaths, Canada, 2020-2022
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Figure 1. Time evolution of the cumulative number of “COVID-19 deaths” for Canada. The
vertical line marks the week of 11 March 2020, when a pandemic was declared by the WHO.
Data is from the Government of Canada (accessed on 3 October 2022).®

" See Footnote 2
18 See Footnote 2
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The same data as in Figure 1, viewed in terms of weekly new “COVID-19 deaths”, for

the same time period (February 2020 to present), is shown in Figure 2.

COVID-19 deaths per week, Canada, 2020-2022
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Figure 2. Time evolution of the weekly new number of “COVID-19 deaths” for Canada. The
vertical line marks the week of 11 March 2020, when a pandemic was declared by the WHO.
Data is from the Government of Canada (accessed on 3 October 2022).°

There is a consensus in the Government of Canada and the major media outlets that
these numbers of “COVID-19 deaths”, reviewed above, represent true and reliable
mortality caused by the SARS-CoV-2 virus, since COVID-19 is uniquely ascribed to this

virus.

We were not able to find any Government of Canada sources or publications that

suggested that the presumed virus could have played an insignificant or minor role in
causing the deaths in some of the deaths attributed to or associated with “confirmed”
COVID-19; nor were we able to find any Government (or investigative media) effort to

estimate the fraction of any such “false positive” attributions of cause of death.

9 See Footnote 2
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What the all-cause mortality says

All-cause mortality by time is the most reliable data for detecting and epidemiologically
characterizing events causing death, and for gauging the population-level impact of any
surge or collapse in deaths from any cause. Such data is not susceptible to reporting
bias or to any bias in attributing causes of death. More and more researchers are
recognizing that it is essential to examine ACM by time, and excess deaths from all
causes compared with projections from historic trends, to help make sense of the

events surrounding COVID-19: See Rancourt et al. (2022)?° and references therein.

Before we describe the quantification method, it is instructive to examine the ACM by
time in Canada over the last three decades. Figure 3 shows ACM by month for Canada,
from January 1991 through December 2020. Contrary to usual practice, we use the full
y-scale, showing the zero, so that one may evaluate the relative importance of the
seasonal variations and of any other changes compared to numbers of all the deaths in
the country. This provides a reference to ascertain the degree to which the declared

pandemic caused a notable excess in mortality after 11 March 2020.

%0 Rancourt, D.G., Baudin, M., Mercier, J. “COVID-Period Mass Vaccination Campaign and Public Health
Disaster in the USA - From age/state-resolved all-cause mortality by time, age-resolved vaccine delivery
by time, and socio-geo-economic data”, Research Gate, 2 August 2022,
DOI:10.13140/RG.2.2.12688.28164, https://www.researchgate.net/publication/362427136 COVID-
Period Mass Vaccination Campaign _and Public_Health Disaster in the USA From agestate-
resolved all-cause mortality by time age-resolved vaccine delivery by time and socio-geo-
economic_data | archived here: https://archive.ph/IFNwK
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ACM by month, Canada, 1991-2020
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Figure 3. All-cause mortality (ACM) by month for Canada, from January 1991 to December
2020, inclusive. The data is from StatCan.?* There are characteristic dips in February, due to
the known artifact arising from February typically having only 28 days. The March-May 2020
peak that occurs immediately following the pandemic announcement of 11 March 2020 is
historically anomalous, and we have discussed it previously.?

Next, we apply similar quantitative methods that we applied recently for the USAZ to
the case of Canada, to quantify excess total ACM for the Covid period, which started on
11 March 2020. By “excess” we mean in addition to the expected mortality for the Covid
period, based on the historic trend prior to 11 March 2020. As such, the expected
mortality for the Covid period is the mortality that one would predict if the Covid period

were just like recent prior periods, in terms of the factors that determine mortality.

2l StatCan (2022) “Deaths, by month”. Release date: 2022-01-24.
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310070801 (accessed on 6 June 2022).

2 Rancourt, D.G., Baudin, M. and Mercier, J. (2021) “Analysis of all-cause mortality by week in Canada
2010-2021, by province, age and sex: There was no COVID-19 pandemic and there is strong evidence of
response-caused deaths in the most elderly and in young males”. ResearchGate, 6 August 2021,
https://doi.org/10.13140/RG.2.2.14929.45921 | archived here: https://archive.ph/CYA20

¥ Rancourt et al. (2022): Footnote 20.
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We use the StatCan data of ACM by week,?* which starts at the week ending Saturday
9 January 2010, and ends at the week ending Saturday 14 May 2022. Although StatCan
refers to this data as “provisional weekly death counts”, we have observed that
successive updates for this product (their Table 13-10-0768-01) do not change the
previously released data to a degree that could significantly change our calculations or

conclusions. The last values in the dataset for May do not appear to be anomalous.

Given the end date of the data and given the start date of 11 March 2020 of the
declared pandemic, the Covid period used in our calculation (the “defined Covid period”)
is the 114-week period between the week ending Saturday 14 March 2020 and the
week ending Saturday 14 May 2022, inclusive. We sum ACM over this 114-week
period. We define non-overlapping 114-week periods of summation of ACM, which
immediately precede the defined Covid period. Four such consecutive periods prior to

the defined Covid period can be accommodated by the data.

We plot the resulting sum of ACM values versus time, along with the ACM by week (on

a different y-axis), in Figure 4.

2 StatCan (2022) “Table 13-10-0768-01 Provisional weekly death counts, by age group and sex”.
Release date: 2022-09-08. https://doi.org/10.25318/1310076801-eng | also:
https://www150.statcan.gc.ca/tl/tbl1/en/tv.action?pid=1310076801 (accessed on 12 September 2022)
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ACM by week, Canada, 2010-2022
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Figure 4. All-cause mortality (ACM) by week, 2010-2022, left y-axis (light blue continuous
curve) for Canada; and ACM sums over the five 114-week non-overlapping consecutive periods
described in the text, right y-axis (dark blue dots, joined by line segments). The ACM sums are
positioned in time on the x-axis at the first week of the respective summation period. The last
114-week period is our operational Covid period (the defined Covid period). The orange straight
dashed line is the least-squares best fit to the four ACM sums prior to the defined Covid period.
The sharp spike occurring in the summer of 2021 corresponds to the heat wave that occurred in
British Columbia (and the north-western USA).

We make a least-squares fit of a straight line to the four ACM sums of the 114-week
periods prior to the defined Covid period (shown in Figure 4). Taking “X” to be the week
number, where x=1 is the first week in the StatCan data, the resulting fitted line has
slope = 264.5 ACM-sum-on-114-weeks per week, intercept = 516,400 deaths in
114-week period, and Pearson correlation coefficient r = +0.9989.

Therefore, the expected 114-week ACM sum for the defined Covid period, based on the
least-squares fitted straight line, is (657.1 + 1.3) x 10° deaths, where the uncertainty is
estimated as the mean of the four absolute values of the deviations of the observed
values from the fitted line; whereas the measured ACM sum for the 114-week defined
Covid period is 679,645 deaths.
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This means that the excess mortality for the 114-week defined Covid period ending on

the week ending on Saturday 14 May 2022, is:
679,645 - (657.1+1.3)x10% = (22.5+1.3) x 10° deaths,

which is seen in Figure 4.

Covid-assigned deaths versus all-cause mortality

The thus obtained excess ACM for the 114-week defined Covid period ending on
14 May 2022 can be compared to the cumulative “COVID-19 deaths” on 14 May 2022.

The latter official value for 14 May 2022, from the Government of Canada (Public Health
Agency of Canada), is: 40,684 “COVID-19 deaths”.?®

Therefore, we have:

40,684 “COVID-19 deaths”
(up to 14 May 2022)
S
22,500 + 1,300 total excess all-cause deaths
(up to 14 May 2022)

This means that there were 18,200 more “COVID-19 deaths” than the 22,500 excess
all-cause deaths (up to 14 May 2022).

% See Footnote 2
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The “COVID-19 deaths” mortality, in magnitude, is 181% of the calculated total excess
ACM (up to 14 May 2022).

If the same ratio were applied to the USA, there would have been 1.81 x 1.27M?® =
2.30M “COVID-19 deaths” in the USA, more than double the official USA number
(998,587 “COVID-19 Deaths” on 14 May 2022, CDC).27

It is inconceivable that a virus killed this many more people than the total excess ACM,
because this would imply that in the absence of the presumed virus there would be a
large deficit of ACM. Alternatively, one would need to believe that Covid measures
(masking, social distancing, isolation, shutting down economic sectors, etc.) cause a net
reduction of deaths from all other causes; such as not causing any deaths while more
than eliminating “influenza and pneumonia”, which in Canada have reported deaths in
the range 6.2 to 8.6 K/year for 2016 through 2019.%

The presumed SARS-CoV-2 virus would have killed approximately twice as many
people as the calculated excess ACM. This means that, in addition to presumably being
the cause for all the excess ACM (which is implausible), the presumed SARS-CoV-2
virus would have also had to rush in and kill 18,200 people, in the same time period and
before they could die of other causes, who most certainly would have died without the
Covid circumstances. What is the meaning of a presumed virulent virus that kills people
who would have died, when they would have died? Alternatively, for example, the Covid
measures would have saved 18,200 people from “influenza and pneumonia”, say, while
the presumed SARS-CoV-2 virus killed them.

More realistically, if approximately half of the excess deaths were due to the aggressive

measures (including: harmful medical treatment, neglect of vulnerable individuals, social

%6 Rancourt et al. (2022): Footnote 20.

2" «COVID Data Tracker - Trends in Number of COVID-19 Cases and Deaths in the US Reported to CDC,
by State/Territory”, CDC, https://covid.cdc.gov/covid-data-tracker/#trends_totaldeaths select 00
Saccessed on 2 October 2022).

8 “Leading causes of death, total population, by age group”, Table: 13-10-0394-01 (formerly CANSIM
102-0561), Release date: 2022-01-24, Statistics Canada,
https://www150.statcan.gc.ca/tl/tbl1/en/tv.action?pid=1310039401 (accessed on 2 October 2022).
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and physical isolation, and loss of regular occupation and care protocols), then at most
10,000 or so deaths could have been caused by the presumed SARS-CoV-2 virus, in
this period, and the reported number of “COVID-19 deaths” is inflated by a factor of
approximately 4, if the cause-of-death determinations can be taken to be meaningful.

Discussion: What does the Government of Canada say?

Deputy Prime Minister of Canada Chrystia Freeland® has stated that if Canada had the
same “COVID-19 deaths” rate per capita as the USA, then there would have been
70,000 more COVID-19 deaths in Canada.*® Freeland referred to a study by Naylor and
other academics as her source. Razak et al. (including Naylor) make their analysis up to
or near 12 February 2022 when the reported cumulative “COVID-19 deaths” for Canada
were at 35,268. For this date, they report “COVID-19 deaths” rates per capita (per
million) of 919 for Canada and 2,730 for the USA (their Figure 1C).3! The USA rate
would produce 105,000 deaths in Canada, which is 70,000 more than 35,000.

This statement by Freeland has a “COVID-19 deaths” rate for the USA, which is 3.0

times larger than for Canada, but Freeland does not mention two important factors:

(1) the USA has an excess-ACM death rate (per capita) that is 6.5 times larger than
for Canada [(1.27M/22.5K)(38M/330M) = 6.5], and
(2) the Covid-measures stringency index (Oxford Stringency Index) is statistically

indistinguishable for the USA and Canada [Figure 2 in Razak et al.*’].

29 https://deputypm.canada.ca/en | archived: https://archive.ph/uyAHz (accessed on 1 October 2022).
% Video: “All-cause deaths continue to skyrocket in Canada”, Rebel News, 26 September 2022.
https://rumble.com/vlimo2p-all-cause-deaths-continue-to-skyrocket-in-canada.html (at 4:12).
*! Fahad Razak, Saeha Shin, C. David Naylor, Arthur S. Slutsky. “Canada’s response to the initial 2 years
of the COVID-19 pandemic: a comparison with peer countries” CMAJ Jun 2022, 194 (25) E870-E877;
DOI: https://doi.org/10.1503/cmaj.220316 . See also the 27 June 2022 Globe&Mail opinion piece by
Razak, Slutsky and Naylor: https://www.theglobeandmail.com/opinion/article-we-need-new-strategies-to-
gzzaclglg—covid—this-falll | archived: https://archive.ph/moeYs .

Ibid.

Correlation - Brief Report |5 October 2022 Page |14


https://deputypm.canada.ca/en
https://archive.ph/uyAHz
https://rumble.com/v1lmo2p-all-cause-deaths-continue-to-skyrocket-in-canada.html
https://doi.org/10.1503/cmaj.220316
https://archive.ph/moeYs

199

Freeland’s attention should have been turned instead to a metric that takes into account
the different health statuses of the vulnerable populations in the two countries.
Freeland could have asked herself: “Why is the ratio of ‘COVID-19 deaths’ to excess
ACM deaths [(40.7K/22.5K)/(0.999M/1.27M)] some 2.3 times larger in Canada than in
the USA?” This contextualized comparison would mean a relative (compared to the
USA) catastrophic failure of the Covid measures intended to prevent spread of the
disease in Canada, in which the presumed infection appears to have disproportionately
devastated those close to death in Canada. Freeland misled herself in her use of the

USA regarding comparative efficacy of Covid measures in Canada.

Discussion: What do the Government scientists say?

Ogden et al. (with Canada’s Chief Public Health Officer Theresa Tam), publishing in the
peer-reviewed journal Canada Communicable Disease Report (CCDR) in July/August
2022 wrote:**

“Together, these observations show that without the use of
restrictive measures and without high levels of vaccination,
Canada could have experienced substantially higher numbers of
infections and hospitalizations and almost a million deaths.”

One million added “COVID-19 deaths” in Canada corresponds to adding approximately
150% of the baseline total (not excess) ACM deaths for the Covid period. This would
increase the Covid-period total (not excess) ACM from approximately 680,000 deaths
(Figure 4) to approximately 1,680,000 deaths. One can gauge what that would look like

on Figures 3 and 4.

% Rancourt et al. (2022): Footnote 20.
% Ogden et al. (2022): Footnote 3.
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To make it more visual and concrete, we simulate the ACM by week for Canada with
the added said “almost a million deaths” in Figure 5. Here, for the sake of illustration
and simplicity, we add the one million deaths to the defined Covid period uniformly to
each of the 114 weeks in the period (1M/114 = 8,772 deaths added to each week in the
defined Covid period; keeping in mind that the Ogden et al. article uses data up to 20

April 2022, which is close to our defined Covid period end date).

Simulated all-cause mortality (ACM) by week, 2010-2022, for Canada, using the proposal of Ogden et al.
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Figure 5. Simulated all-cause mortality (ACM) by week, 2010-2022, for Canada, using the
proposal of Ogden et al. (red line), as explained in the text. The original data for the Covid

period is shown by the dashed grey line.

Figure 5 suggests that the proposal made by Ogden et al. is not compatible with any

reasonable view.

The theoretical notion that one million deaths were averted by the Covid measures in
Canada is incredible on its face, but also contrary to reality. It would correspond to
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210 million deaths globally [(1M/38M) x 8B]; and to 8.7 million deaths in the USA
[(1M/38M) x 330M].

This conclusion by Ogden et al. (including Canada’s Chief Public Health Officer Theresa
Tam) is not connected to reality because, in addition to relying on reported “COVID-19
deaths” numbers, it is a product of their theoretical modelling exercise. All such models
applied to nations have been shown to often be grossly unreliable. Arguably the most
renowned epidemiologist (cited >450K times),* Stanford University’s Professor of

Medicine John loannidis and co-authors had this to say about the models:*®

“Epidemic forecasting has a dubious track-record, and its failures
became more prominent with COVID-19. Poor data input, wrong
modeling assumptions, high sensitivity of estimates, lack of
incorporation of epidemiological features, poor past evidence on
effects of available interventions, lack of transparency, errors, lack
of determinacy, consideration of only one or a few dimensions of
the problem at hand, lack of expertise in crucial disciplines,
groupthink and bandwagon effects, and selective reporting are
some of the causes of these failures. Nevertheless, epidemic
forecasting is unlikely to be abandoned.”

At this point, readers have a choice of preferring to side more with one of two end-point
views. Either:

(a) the Government of Canada saved one million lives, and thereby brought down
mortality coincidentally to virtually the same level as in the pre-Covid periods
(Figures 3 and 4); within 22,500 deaths, which is approximately +3% of expected
mortality in the absence of Covid circumstances; or

% Google Scholar authenticated profile of John P.A. loannidis:
https://scholar.google.com/citations?user=JiiMY_wAAAAJ&h| (accessed on 1 October 2022).

% Joannidis JPA, Cripps S, Tanner MA. “Forecasting for COVID-19 has failed”. Int J Forecast. 2022 Apr-
Jun;38(2):423-438. doi: 10.1016/j.ijforecast.2020.08.004. Epub 2020 Aug 25. PMID: 32863495; PMCID:
PMC7447267. https://doi.org/10.1016/].ijforecast.2020.08.004
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(b) there was no such contagious and virulent pathogen present, and, if anything,

the Covid measures may have caused net harm.

In making this evaluation, readers should keep in mind that the article by Ogden et al.
(including Canada’s Chief Public Health Officer Theresa Tam) is written by the
architects of the Covid measures in Canada, and of the COVID-19 testing and
vaccination campaigns. It is published by the Government. And it constructs a
theoretical justification for unprecedented harsh nation-wide Government measures. It

cannot be viewed as unbiased.

Conclusion

We determined the expected defined Covid period mortality (nominally from 11 March
2020 to 14 May 2022), in the absence of the Covid period circumstances to be:
(657.1 + 1.3) x 10° deaths.

The actual defined Covid period mortality was 679,645 deaths.

Therefore, the defined Covid period excess mortality is (22.5 + 1.3) x 10® deaths, which
is significantly smaller than the Government’s reported “COVID-19 deaths” number of

40,684 for the same period.

These numbers (22.5K vs 40.7K) cannot be reconciled by any reasonable explanation,

which we have explored.

The recent suggestion by Ogden et al., derived from using the Government-reported
“COVID-19 deaths” mortality, that “without the use of restrictive measures and without
high levels of vaccination, Canada could have experienced [...] almost a million

deaths.”, appears to be palpably disconnected from reality (Figure 5).
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In conclusion, our analysis overall leads us to suggest that the COVID-19 mortality
statistics collected and presented by the Government of Canada (Public Health Agency

of Canada) are unreliable at best, and possibly meaningless.
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Abstract

Background: Segregation of unvaccinated people from public spaces has been a novel and
controversial COVID-era public health practice in many countries. Models can be used to
explore potential consequences of vaccination-status-based segregation. The models must be
simple enough to provide reliable predictions of possibilities, while including the essential
ingredients to make them sufficiently realistic. We systematically investigate implementing
effects of segregation on person-to-person contact frequencies and show this critically
determines the predicted epidemiological outcomes.

Methods: We describe a susceptible-infectious-recovered (SIR) two-population model for
vaccinated and unvaccinated groups of individuals that transmit an infectious disease by
person-to-person contact. The degree of segregation between the two groups, ranging from
zero to complete segregation, is implemented using the like-to-like mixing approach developed
by Garnett and Anderson (1996) for sexually-transmitted diseases, adapted for presumed SARS-
CoV-2 transmission. We allow the contact frequencies for individuals in the two groups to be
different and depend, with variable strength, on the degree of segregation.

Results: Model predictions for a broad range of model assumptions and respiratory-disease
epidemiological parameters are calculated to examine the predicted effects of segregation.
Segregation can either increase or decrease the attack rate among the vaccinated, depending
on the type of segregation (isolating or compounding), and the contagiousness of the disease.
For diseases with low contagiousness, segregation can cause an attack rate in the vaccinated,
which does not occur without segregation.

Interpretation: There is no blanket epidemiological advantage to segregation, either for the

vaccinated or the unvaccinated. Negative epidemiological consequences can occur for both
groups.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Introduction

Models can be used to investigate infectious disease dynamics under different hypotheses
about the characteristics of a disease and the effects of health policy. In such applications, it is
crucial to base the model on the simplest-possible sufficiently realistic conceptual foundation
and only add extensions incrementally (Garnett & Anderson, 1996; Siegenfeld et al., 2020). This
optimizes relevance and minimizes confounding the results with complexity and intangible
propagation of error. Following this approach, researchers have extended the foundational SIR-
type model to explore diseases with birth and death dynamics, maternal- or vaccine-derived
immunity, latency of infection, and so on (Hethcote, 2000; Keeling & Rohani, 2008; Martcheva,
2015).

Recently, simple susceptible-infectious-recovered (SIR) models of epidemic dynamics have been
implemented with two interacting societal groups (vaccinated and unvaccinated) to examine
epidemic outcomes for variable degrees of interaction between the two groups, including
whether the unvaccinated put the vaccinated unduly or disproportionately at risk, using
epidemiological parameters presumed to be representative of SARS-CoV-2 (Fisman et al., 2022;
Virk, 2022; Kosinski, 2021).

These prior implementations take the person-to-person contact frequencies of the majority and
socially-excluded groups to be equal and held constant, irrespective of the degree of
segregation (or exclusion or “like-to-like mixing”). In other words, in the previous models, the
total number of contacts that an individual from either of the two societal groups experiences
per day is constant and unaffected by the degree of segregation between the two groups.

Here, we implement person-to-person contact frequencies that can be different for the two
groups and that vary with the degree of segregation, in different ways. We explore different
modes and amplitudes of the variations of frequencies with degree of segregation, and their
consequences on the predicted epidemiological outcomes. This is necessary because, for
example, in many actual regulatory policies the excluded unvaccinated group is barred from
public venues or services where people gather and from public transport where people are in
close proximity for various durations.

In general, the person-to-person contact frequency of the excluded group decreases with
increasing segregation if isolation is in effect, and increases with increasing segregation if the
excluded individuals are in-effect put into compounds or camps. Implementing these essential
model features gives rise to a rich and more complex epidemiological behaviour, whatever
epidemiological parameters are used.

The Model

We adopt the standard SIR framework with two sub-populations, as has been done with
sexually-transmitted diseases and was recently done with vaccination status.
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Following the usual SIR model structure, a person can be in one of three states: susceptible to
infection (S), infectious (1), or recovered and immune (R). If a susceptible person comes into
contact with an infectious person, the susceptible person can become infectious, and infectious
people eventually recover.

Our model population is divided into two groups: vaccinated and unvaccinated. Vaccination is
“all or nothing”, such that a proportion VE of the vaccinated population isimmune (are in the R
state from the outset of the simulation), where the parameter VE represents vaccine efficacy.
The model also includes a natural immunity parameter, NI, equal to the proportion of
unvaccinated that are immune from the outset.

The model parameter n controls the degree of segregation between vaccinated and
unvaccinated people. When n = 0, there is no segregation, and the two groups mix randomly.
When n =1, there is complete segregation, such that vaccinated only come into contact with
other vaccinated, and unvaccinated only come into contact with other unvaccinated.

The parameter n follows from Garnett and Anderson (1996), who modeled sexually-transmitted
disease spread in a population divided into groups with different frequencies of sexual contacts.
Since it is reasonable to assume that the level of desire for sexual contact is an intrinsic
characteristic of individuals, it is reasonable to assume that segregation does not change the
contact frequencies in either group in Garnett and Anderson’s model. However, contact
frequency is not generally and solely an intrinsic individual characteristic, and segregation
based on vaccination status may increase or decrease contact frequencies, depending on how
the segregation is implemented.

In our model, the contact frequencies of either vaccinated or unvaccinated individuals (or both)
can increase, decrease, or remain constant as the two groups are segregated. This is controlled
by the parameters m, and m,, which determine the degree of increase or decrease of the
contact frequency in either group, as n is varied.

For example, when m, < 0, as segregation is increased, the contact frequency of unvaccinated
people, c,, decreases. This corresponds to segregation policy that excludes unvaccinated people
from public spaces, e.g., using vaccination passports. Conversely, when m, > 0, then as
segregation is increased, ¢, increases. This corresponds to segregation policy that compounds
unvaccinated people, for example in prisons or camps.

In principle, the vaccinated and unvaccinated contact frequencies may be different even when
the two groups are completely unsegregated. The unsegregated (n = 0) contact frequencies are
set by the parameters c? and c. Similarly, the probability that contact between a susceptible
and infectious person results in transmission is By (Bu) for a susceptible vaccinated
(unvaccinated) person and the rates of recovery from infection for the vaccinated and
unvaccinated individuals are y,and y,, respectively.
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There are thus two “B parameters”, two “c parameters” and two “y parameters” in our model.
Since each B parameter always occurs as part of a product with its respective ¢ parameter, the
B parameters can freely be set equal to 1: this imposes that the “contacts” considered in the
model are, by definition, only those contacts that are of sufficiently close proximity and long
duration that an infection is guaranteed to occur when a susceptible and an infectious person
meet. We set By = By = 1 in this paper, without any loss of generality. For a more contagious
virus, more of an individual’s contacts are long and close enough that transmission would be
guaranteed, corresponding to higher ¢ and cQ.

The model of Fisman et al. (2022) is the special case of our model with m,=m, =0, c3p, =
cdBy and y, = y,. When m, = m, = 0, the contact frequencies of both vaccinated and
unvaccinated remain constant regardless of the level of segregation. Segregation then implies
two parallel societies, where each population has its own public spaces (such as restaurants,
airplanes, etc.) and within these spaces maintain the same contact frequencies they would have
with no segregation. Fisman et al.’s implementation does not represent how segregation has
been applied during the COVID era in Canada and many countries (Looi, 2021; Lawson et al.,
2022), since unvaccinated people were excluded from public spaces while vaccinated people
were allowed access.

We do not use the “basic reproduction number”, Ry, since it would be derived from the
fundamental parameters of the model. In a model with multiple sub-populations, the dynamics
are not characterized by a single Ro because the infection probabilities (B parameters), contact
frequencies (c parameters) and recovery rates (y parameters) are different for each sub-
population, in general.

The parameters of our model are listed in Table 1; calculated quantities in Table 2. Technical
details of the model are in Appendix 1.

Table 1: Model parameters

Parameter description Symbol Typical value Bound
Degree of segregation between vaccinated and unvaccinated n (varied) Oto1l
groups
Probability of transmission per contact between a susceptible By 1 Oto1l
vaccinated person and an infectious person
Probability of transmission per contact between a susceptible Bu 1 Oto1l
unvaccinated person and an infectious person
Contact frequency of vaccinated people when n=0 cd 438 contacts/yr 20
Contact frequency of unvaccinated people when n=0 cd 438 contacts/yr 20
Degree of increase (m,, > 0) or decrease (m, < 0) of m, 0 >-1
vaccinated contact frequency as a function of n
Degree of increase (m,, > 0) or decrease (m,, < 0) of my, (varied) >-1
unvaccinated contact frequency as a function of n
Rate of recovery of a vaccinated person (per year) 12 73 yrt 20



https://doi.org/10.1101/2022.08.21.22279035
http://creativecommons.org/licenses/by/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2022.08.21.22279035; this version posted November 28, 2022. The copyright holder for this
preprir?vd(gwas not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license .

5
Rate of recovery of an unvaccinated person (per year) Y 73 yrt >0
Population fraction of vaccinated people P, 0.8 Oto1l
Vaccine efficacy VE 0.2 Oto1l
Proportion of unvaccinated population with natural immunity NI 0.2 Otol
Population of entire society N 10’ >0

Table 2: Quantities calculated from model results (mathematical definitions in Appendix 1, Section A1.3)

Name Symbol
Attack rate in the vaccinated population A
Attack rate in the unvaccinated population Ay
Share of infections among vaccinated people that B,
were due to contacts with infectious
unvaccinated people

Results

The attack rate among the vaccinated population is defined as the proportion of initially-
susceptible vaccinated people who become infected during the epidemic: 4, =

(S,,(to) — S,,(tf))/S,,(tO), where S,(to) is the number of susceptible vaccinated people at the
beginning of the epidemic and S.(ty) is the number of susceptible vaccinated people remaining
once there are no longer any infectious people in the entire (vaccinated and unvaccinated)
population. A, is defined equivalently, for the unvaccinated.

We also define B, as the share of infections among vaccinated people that were due to contacts
with infectious unvaccinated people.

We focus on segregation types that are targeted at the unvaccinated group. We assume, for
simplicity, that segregation has no impact on the contact frequency of vaccinated people (m, =
0). We also assume that the contact frequencies in both groups are the same when there is no
segregation (c2 = c2). We use the same values as used by Fisman et al. (2022) for the
remaining parameters: P, = 0.8, VE=0.8, NI=0.2, ¥, = y,, = 73 yr}, and N = 10”. These values
were presumed to be representative for COVID-19 and vaccination.

Appendix 2 contains supplementary figures with results for different parameter combinations,
including my # 0 and c2 # c2. In all results in this paper, simulations were initiated with a seed
number of 100 infectious individuals distributed proportionately among the two sub-
populations.

Fig. 1 shows results for a moderate value of ¢ = ¢ = 300. For reference, in a single-
population model, c =300, B =1 and y = 73 corresponds to Ro = 4.1.

As can be seen in Fig. 1a, when my < 0 (exclusion and isolation of unvaccinated people) the
vaccinated attack rate, A, decreases with increasing segregation. However, when m, >0
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(compounding of unvaccinated people), there is a maximum in A, for moderate values of n.
Therefore, with compounding segregation, very large values of n are required for A, to be lower
than its value with no segregation (n = 0). Fig. 1b is the unvaccinated attack rate, A, versus
degree of segregation, n. Fig. 1c shows that B,, the share of vaccinated infections that are due
to unvaccinated people, has a shape similar to A,(n, my). In all panels, 20% of the total
population is unvaccinated (P, = 0.8; Table 1).

Fig. 1 therefore demonstrates that whether segregation increases or decreases the vaccinated-
population attack rate depends on how segregation is implemented.

Pv=0.8, VE=0.8, NI=0.2, ¢ =300, c=300, m,=0,8,=1,B,=1, y, =73, y, = 73

a) b) o)

1.0
0.6

0.8 0.5
0.4
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< 5y
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Figure 1: Three different quantities as functions of the degree of segregation, n, for different values
of m,: (a) Attack rate among the vaccinated sub-population, (b) Attack rate among the unvaccinated
sub-population, (c) Share of vaccinated infections that were due to contacts with unvaccinated
people. Values of fixed model parameters are indicated at the top of the figure.

Figs. 2 and 3 show results for larger ¢ = 2. Compared to Fig. 1a, A, in Figs. 2a and 3a does not
increase much with n when my > 0, and A, no longer has a maximum when m, = 0. Comparing
with Fig. 1a, it can also be seen that A, increases with increasing ¢ = ¢ when there is no
segregation (n = 0).

Pv=0.8, VE=0.8, NI=0.2, c® =437, c°=437, m,=0,8,=1,8,=1, v, =73, yy =73
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Figure 2: Same as Fig. 1, except that ¢ = ¢Q = 437.
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7
Pv=0.8, VE=0.8, NI=0.2, c? =600, c® =600, m,=0,B,=1,8,=1, ¥, =73, Y =73
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Figure 3: Same as Fig. 1, except that ¢ = ¢ = 600.

For smaller ¢ = ¢ (Figs. 4 and 5), A/(n = 0) is decreased, and larger n can dramatically increase
A,. Even with an isolating segregation policy (m, = -0.5 in Fig. 4a), Ay is increased for moderate
values of n.

When ¢ = ¢ are small enough (c? = ¢2 = 200 in Fig. 5), there is no epidemic among the
vaccinated in the absence of segregation (A.(n = 0) = 0). However, a non-zero vaccinated-
population attack rate (A, > 0) occurs if n is sufficiently large, and emerges regardless of
whether one isolates or compounds the unvaccinated. Therefore, for small values of c,? = c3,
any type of segregation can only harm the vaccinated.

Pv=0.8, VE=0.8, NI=0.2, c? =250, c{ =250, m,=0,8,=1,8,=1,y,=73,y,=73
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Figure 4: Same as Fig. 1, except that ¢ = ¢Q = 250.
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Pv=0.8, VE=0.8, NI=0.2, ¢? =200, ¢ =200, m, =0, }3;, =1, ,BL,= Ly.,=73, vu=73
a) b) c)ﬂ
—_— =1 1.0 '
0.4 my=-05
— =0 0.6
— =05 08
— =1 05
0.3 — =2 A
0.6 0.4
> =] >
< << m
0.2 0.3
0.4
0.2
o1 02
0.1
0.0 0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
n n n

Figure 5: Same as Fig. 1, except that ¢ = ¢ = 200.

Appendix 2, contains supplementary figures showing that when VE is decreased (e.g. VE=0.4),
Ayis not strongly influenced by n, regardless of m,; therefore, any beneficial effect of
segregation on Ay is reduced as VE decreases.

Appendix 2 also explores ¢ # c2. For example, when ¢ > ¢, the unvaccinated contact
frequency is reduced even when there is no segregation; increasing n can then increase A,
significantly for parameter values for which a similar increase of A, does not occur when
cd=cl(eg. cd =437, m,=1,m,=0,VE=0.8, in Section A2.6).

Interpretation

Our model shows that vaccination-status-based segregation can have significantly different and
counter-intuitive impacts on the outcome of an epidemic, depending on how the segregation is
applied, and depending on cultural and population-density factors, for example, that co-
determine ¢ and c?.

Regarding segregation, the key feature is that the contact frequencies of people in each of the
segregated sub-populations depend on the degree and type of segregation applied. Segregation
that compounds the unvaccinated (m, > 0 and m, = 0) generally causes an increase in the
vaccinated-population attack rate, A, for small and intermediate degrees of segregation, n.
Segregation that isolates and excludes the unvaccinated (my < 0 and m, = 0) decreases A, for
“more contagious viruses” (i.e. large cJ = c2); however, for “less contagious viruses” (smaller
cd = c?), both isolating and compounding types of segregation can increase A, beyond its value
in an unsegregated society. For “viruses that are not very contagious” (small ¢ = c?), applying
segregation can cause a sizeable epidemic among the vaccinated even though virtually no
vaccinated people would be infected in an unsegregated society.

We find that By, the share of vaccinated infections that are due to contact with unvaccinated
people, follows a similar behaviour to Ay as a function of the degree of segregation, when
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segregation has no impact on the vaccinated contact frequency (my, = 0). For this type of
segregation, Ay and By either increase or decrease simultaneously with increasing n, depending
on the value of my, and By is minimized for complete segregation. When m, = 0, there is
therefore no type or degree of segregation that reduces the vaccinated attack rate while
simultaneously “enhancing the degree of risk” to vaccinated people from unvaccinated people
(Fisman et al., 2022).

In contrast, when m, # 0, such that segregation affects the contact frequencies of vaccinated
people, segregation can produce an increased A, along with a decreased B, and vice-versa, as
shown in Appendix 2 (Sections A2.3 and A2.4).

The broad range of results emerging from our simple model highlights the importance of the
impact of segregation on contact frequencies, which has not been considered in other epidemic
models, including network-based models in which unvaccinated people cluster together in
“cliques” or households (Salathé & Bonhoeffer, 2007; De Leon & Aran, 2022; Achitouv, 2022).

Limitations

SIR models and their variations, including agent-based versions (Hinch et al., 2021; Achitouyv,
2022) are based on the paradigm of transmission due to pairwise contact between a recently
infected and a susceptible individual. However, this paradigm is unable to account for
important features of viral respiratory disease incidence, in particular its seasonal pattern that
is strongly dependent on latitude and its rapid emergence and disappearance occurring at
essentially the same time at widely dispersed locations (Hope-Simpson, 1992). Seasonality of
viral respiratory disease may be driven by the seasonality of absolute humidity and its effect on
transmission via aerosols (Shaman & Kohn, 2009; Shaman et al., 2010). However air-borne
transmission via long-lived suspended aerosol particles is not directly compatible with pairwise
transmission, since it occurs in built environments where many people may transit or be
present (Bulfone et al., 2021). These fundamental limitations of present viral respiratory
disease models are caveats to any use of such models in health policy.

Conclusion

Using SIR modelling, we have shown that vaccination-status-based segregation can lead to
significantly different and counter-intuitive epidemic outcomes depending on how segregation
is applied, and depending on complex cultural and physical factors that co-determine infectious
contact frequencies (i.e., the products Bc), including negative health consequences for either
segregated group, even disregarding the expected deleterious health impacts of the
segregation policies themselves (Cohen, 2004; Cohen et al., 1991; Cohen et al., 1997). Given the
lack of reliable empirical evaluations of needed infectious contact frequency values, given the
now proven outcome sensitivities to the infectious contact frequencies, and given the intrinsic
limitations of SIR models in this application, we cannot recommend that SIR modelling be used
to motivate or justify segregation policies regarding viral respiratory diseases, in the present
state of knowledge.
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Abstract

All-cause mortality by time is the most reliable data for detecting and epidemiologically
characterizing events causing death, and for gauging the population-level impact of any
surge or collapse in deaths from any cause. Such data is not susceptible to reporting
bias or to any bias in attributing causes of death. We compare USA all-cause mortality
by time (month, week), by age group and by state to number of vaccinated individuals
by time (week), by injection sequence, by age group and by state, using consolidated
data up to week-5 of 2022 (week ending on February 5, 2022), in order to detect
temporal associations, which would imply beneficial or deleterious effects from the
vaccination campaign. We also quantify total excess all-cause mortality (relative to
historic trends) for the entire covid period (WHO 11 March 2020 announcement of a
pandemic through week-5 of 2022, corresponding to a total of 100 weeks), for the covid
period prior to the bulk of vaccine delivery (first 50 weeks of the defined 100-week covid
period), and for the covid period when the bulk of vaccine delivery is accomplished (last

50 weeks of the defined 100-week covid period); by age group and by state.

We find that the COVID-19 vaccination campaign did not reduce all-cause mortality
during the covid period. No deaths, within the resolution of all-cause mortality, can be
said to have been averted due to vaccination in the USA. The mass vaccination
campaign was not justified in terms of reducing excess all-cause mortality. The large
excess mortality of the covid period, far above the historic trend, was maintained
throughout the entire covid period irrespective of the unprecedented vaccination
campaign, and is very strongly correlated (r = +0.86) to poverty, by state; in fact,
proportional to poverty. It is also correlated to several other socio-economic and health
factors, by state, but not correlated to population fractions (65+, 75+, 85+ years) of
elderly state residents.

The excess all-cause mortality by age group (also expressed as percentage of pre-
covid-period all-cause mortality for the age group) for the whole USA for the entire covid

period through week-5 of 2022 is:
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all ages 1.27M 23%
0-24 13K 12%
25-44 109K 41%
45-64 274K 27%
65-74 319K 30%
75-84 316K 24%
85+ 240K 14%

The corresponding fatality risk ratios are relatively uniform with age (non-exponential
and non-near-exponential with age; and even skewed towards young adults), which
holds essentially for all states, and for all examined periods within the covid period. This
fundamental result implies that a dominant cause of excess mortality could not have
been assigned COVID-19, which consistently has been measured to have a strong
near-exponential infection fatality ratio with age. The implication is further corroborated
by the absence of correlation between all-age-group-integrated excess mortality and
age, by state. COVID-19 was not a dominant cause of excess mortality during the covid

period in the USA.

All of our observations can be coherently understood if we interpret that the covid-period
socio-economic, regulatory and institutional conditions induced chronic stress and social
isolation among members of large vulnerable groups (individuals afflicted and co-
afflicted by poverty, obesity, diabetes, high susceptibility to bacterial respiratory infection
[inferred from pre-covid-period antibiotic prescription rates], old age, societal exclusion,
unemployment, drug and substance abuse, and mental disability or serious mental
illness), which in turn caused many of these individuals to be more and fatally
immunocompromised, allowing them to succumb to bacterial pneumonia, at a time
when a documented national pneumonia epidemic raged and antibiotic prescriptions
were systemically reduced; in addition to possible comorbidity from COVID-19 vaccine
challenge against individuals thus made immunocompromised, under broad and hastily

implemented “vaccine equity” programs.
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Table of abbreviations and definitions
Abbreviation Name Units Description Notes
Resident population estimate of people aged 65
65+ 65+ People years old and over as of July 1st, 2020
65+/pop 65+ by population % E\r/grrJortlon of the population aged 65 years old and
Resident population estimate of people aged 75
75+ 5% People years old and over as of July 1st, 2020
75+/pop 75+ by population % E\rlgfortlon of the population aged 75 years old and
Resident population estimate of people aged 85
85+ 85+ People years old and over as of July 1st, 2020
85+/pop 85+ by population % (I;’\;g?ortlon of the population aged 85 years old and
i . Mortality from all causes of death (occurring in a
ACM All-cause mortality Deaths defined period and for a defined place)
ACM/m ACM by month Deaths/m | ACM occurring per month
ACM/w ACM by week Deaths/w | ACM occurring per week
At least 1 dose | Atleast 1 dose People Total count of people with at least one dose 1
Booster Booster People Total count of people aged 12 years and older with 1
a booster dose
Centers for Disease The Centers for Disease Control and Prevention is
CDC . N/A the national public health agency of the United
Control and Prevention States
"Coronavirus disease 2019 is a contagious disease
COVID-19 coronavirus disease 2019 | N/A caused by severe acute respiratory syndrome
coronavirus 2"
Period starting with the WHO announcement of a
covid period covid period pandemic on March 11, 2020, up to and including

the most reliable ACM data (through December
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2021 for the data by month; through week-5 of 2022
for the data by week)

ACM peak occurring over March, April and May

cvpl COVID-peak 1 Deaths 2020
cvp2 COVID-peak 2 Deaths ACM peak occurring over the winter 2020-2021
Disability Disability % Percent of Americans with a disability
Fully vaccinated | Fully vaccinated People Total count of people who are fully vaccinated
ACM for the 22-month Integrated ACM from March 2020 to December
m22c : ) Deaths .
covid period 2021, included
ACM for the 1st 22-month
m22c-1 period prior to the covid Deaths !ntegrated ACM from May 2018 to February 2020,
. included
period
ACM for the 2nd 22-month .
Mm22c-2 period prior to the covid Deaths !ntegrated ACM from July 2016 to April 2018,
) included
period
MHI Median Household Income | $ Estimated median household income in US dollars
Prevalence of self-reported obesity among U.S.
Obesity Obesity % adults (BRFSS (Behavioral Risk Factor Surveillance
System), 2020)
pCVD pre-covid Deaths corresponds to w50c-2
o Pooulation People Resident population estimate for the states of the
bop P P USA as of July 1st of 2020
Poverty Poverty % Percent of the population living in poverty
pVax pre-vaccination Deaths corresponds to w50c-1
Excess mortality during the
pVax-pCVD pre-vaccination period of Deaths pVax-pCVD = w50c-1 - w50c-2
the covid period
pVax- pVax-pCVD expressed as pVax-pCVD/pCVD = (w50c-1 - w50c-2) / w50c-2
a percentage of pre-covid | % :
pCVD/pCVD . (Equation 9)
mortality
smpl Summer-peak 1 Deaths ACM peak occurring over the summer 2020
smp2 Summer-peak 2 Deaths ACM peak occurring over the late-summer and fall
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2021

Social Security Disability

Number of all disabled beneficiaries aged 18-64 of

SSDI Insurance People the SSDI program
SSDI/pop SSDI by population % SSDI normalized by population
SSI ﬁ]lé%ﬂimental Security People Number of recipients of the SSI program
SSl/pop SSI by population % SSI normalized by population
USA United States of America N/A USA s cor_nposed of 51 states,__lncludlng the District
of Columbia, Alaska and Hawaii
United States program for vaccine safety, co-
VAERS Vaccine Adverse Event N/A managed by the U.S. Centers for Disease Control
Reporting System and Prevention (CDC) and the Food and Drug
Administration (FDA)
Vax vaccination Deaths corresponds to w50c
Excess mortality during the
Vax-pCVD vaccination period of the Deaths Vax-pCVD = w50c - w50c-2
covid period
Vax- Vsrxc‘gri;’[)eeoﬂprf;_sci‘igs ® Vax-pCVD/pCVD = (W50c - w50c-2) / w50c-2
pCVD/pCVD percentage ot p 0 (Equation 10)
mortality
Difference in mortality
between the vaccination
Vax-pVax period and the pre- Deaths Vax-pVax = w50c - w50c-1 (Equation 11)
vaccination period of the
covid period
Vax- Vax-pVax expressed asa Vax-pVax/pCVD = (w50c - w50c-1) / w50c-2
percentage of pre-covid % .
pVax/pCVD . (Equation 12)
mortality
Integrated ACM from week-11 of 2020 (week of
w100c 'g‘g/'?g foerrtir;(; 100-week Deaths March 9, 2020) to week-5 of 2022 (week of January
P 31, 2022), included
W100c-1 ACM for the 1st 100-week Deaths Integrated ACM from week-15 of 2018 (week of April

period prior to the covid

9, 2018) to week-10 of 2020 (week of March 2,
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period

2020), included

ACM for the 2nd 100-week

Integrated ACM from week-19 of 2016 (week of May

w100c-2 period prior to the covid Deaths 9, 2016) to week-14 of 2018 (week of April 2, 2018),
period included
ACM for the 50-week Integrated ACM from week-8 of 2021 (week of
w50c vaccination period of the Deaths February 22, 2021) to week-5 of 2022 (week of 8
covid period January 31, 2022), included
ACM for the 50-week pre- Integrated ACM from week-11 of 2020 (week of
w50c-1 vaccination period of the Deaths March 9, 2020) to week-7 of 2021 (week of February 9
covid period 15, 2021), included
ACM for the 1st 50-week Integrated ACM from week-13 of 2019 (week of
w50c-2 period prior to the covid Deaths March 25, 2019) to week-10 of 2020 (week of March 10
period 2, 2020), included
The World Health Organization is a specialized
WHO World Health Organization | N/A agency of the United Nations responsible for
international public health.
Excess mortality during the
xDc(22)1 22-month covid period, Deaths xDc(22)1 = m22c - m22c-1 (Equation 1)
relative to m22c-1
xDc(22)1 expressed as a
xDc(22)1% percentage of pre-covid % xDc(22)1% = xDc(22)1 / m22c-1 (Equation 3)
mortality
Excess mortality during the
xDc(22)2 22-month covid period, Deaths xDc(22)2 = m22c - m22c-2 (Equation 2)
relative to m22c-2
xDc(22)2 expressed as a
xDc(22)2% percentage of pre-covid % xDc(22)2% = xDc(22)2 /| m22c-2 (Equation 4)
mortality
Excess mortality during the
xDc(100)1 100-week covid period, Deaths xDc(100)1 = w100c - wl1l00c-1 (Equation 5) 11
relative to w100c-1
xDc(100)1% | XDc(100)1 expressedasa | o xDc(100)1% = xDc(100)1 / wi00c-1 (Equation 7) | 12

percentage of pre-covid
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mortality

xDc(100)1/pop

xDc(100)1 by population

xDc(100)1 normalized by population

13

xDc(100)2

Excess mortality during the
100-week covid period,
relative to w100c-2

Deaths

xDc(100)2 = w100c - wl00c-2 (Equation 6)

xDc(100)2%

xDc(100)2 expressed as a
percentage of pre-covid
mortality

%

xDc(100)2% = xDc(100)2 / w1l00c-2 (Equation 8)

1 In Figures 10 and 11, it is presented as the cumulative number of people by week
2 Disability is defined as a long-lasting sensory, physical, mental, or emotional condition or conditions that make it difficult
for a person to do functional or participatory activities such as seeing, hearing, walking, climbing stairs, learning,
remembering, concentrating, dressing, bathing, going outside the home, or working at a job.

3 Also called "pre-vaccination-period excess mortality” in the text

4 Also called "covid-period pre-vaccination-period relative excess mortality" in the text

5 Also called "late-summer-2021 peak” in the text

6 Also called "vaccination-period excess mortality" in the text

7 Also called "covid-period vaccination-period relative excess mortality" in the text

8 Also called "integrated mortality in the vaccination period of the covid period"” in the text

9 Also called "integrated mortality in the pre-vaccination period of the covid period" in the text
10 Also called "pre-covid-period integrated mortality” in the text

11 Also called "100-week covid-period excess mortality” in the text

12 Also called "covid-period fatality risk ratio” in the text

13 Also called "100-week covid-period fatality ratio" in the text
N/A stands for not applicable
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1. Introduction

Following Rancourt’s 2 June 2020 article critically assessing circumstances of the
declared pandemic using all-cause mortality (ACM) (Rancourt, 2020), more and more
researchers are recognizing that it is essential to examine ACM by time, and excess
deaths from all causes compared with projections from historic trends, to help make
sense of the events surrounding COVID-19 (Kontis et al., 2020; Rancourt, Baudin and
Mercier, 2020; Villani et al., 2020; Rancourt, Baudin and Mercier, 2021a, 2021b;
Achilleos et al., 2021; Chan, Cheng and Martin, 2021; Faust et al., 2021; Islam, Jdanov,
et al., 2021, Islam, Shkolnikov, et al., 2021; Jacobson and Jokela, 2021; Joffe, 2021;
Karlinsky and Kobak, 2021; Kobak, 2021; Kontopantelis et al., 2021; Locatelli and
Rousson, 2021; Sanmarchi et al., 2021; Woolf et al., 2021; Woolf, Masters and Aron,
2021; Kontopantelis et al., 2022; Ackley et al., 2022; Johnson and Rancourt, 2022; Lee
et al., 2022; Wang et al., 2022).

Rancourt (2020) argued that ACM by time and by jurisdiction data for many countries
and states of the USA in the months that followed the WHO 11 March 2020 declaration
of a pandemic:
(1) was inconsistent with the dominant view of the characteristic features of a
pandemic (high contagiousness and spread by person-to-person “contact”), and
(2) gave clear evidence of synchronous local “hot spot” (jurisdictional)

response-induced mortality.

Likewise, in our further prior analyses of ACM by time (by day, week, month, year) for
many countries (and by province, state, region or county), we found that both the initial
and long-term ACM data in the covid period is inconsistent with a viral respiratory
disease pandemic, where the time-integrated mortality per capita is highly
heterogeneous between jurisdictions, with no anomalies in the first many months in
most places, and hot spots or hot regions having death rate increases that are

synchronous with aggressive local or regional responses, both medical and
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governmental, which accompanied the 11 March 2020 WHO declaration of a pandemic
(Rancourt, Baudin and Mercier, 2020, 2021a, 2021b; Johnson and Rancourt, 2022).

The initial surges in ACM are highly localized geographically (by jurisdiction) and are
precisely synchronous (all starting immediately after the 11 March 2020 WHO
declaration of a pandemic, across continents), which is contrary to model pandemic
behaviour; but is consistent with the surges being caused by the known government
and institutional responses (Rancourt, 2020; Rancourt, Baudin and Mercier, 2020,
2021a, 2021b; Johnson and Rancourt, 2022).

The ACM by time data for the USA in the covid period has extraordinary features,
including large peaks occurring in the summer seasons, and dramatically different state
to state behaviours. State-to-state heterogeneity in integrated covid-period health-
status-adjusted mortality is well illustrated by Johnson and Rancourt (Johnson and
Rancourt, 2022; their Figure 7). Above-decadal-trend mortality in the covid period is
massive. Nothing like this occurs in neighbouring Canada (Rancourt, Baudin and
Mercier, 2021a). Nothing like this occurs in Western European countries. Similar
anomalies occur in some Eastern European countries and in Russia. The large
differences in covid-period mortality in the USA compared to other Western countries
are probably related to the known relatively poor health-status of the USA population,

suggesting large groups of particularly vulnerable residents (Roser, 2020).

We found that in the USA the state-wise integrated excess ACM of all main age groups
in the summer seasons (2020 and 2021) especially was largest (on a per capita basis)
in the southern states, and was correlated to state-specific obesity and poverty rates,
strongly correlated to the product of obesity and poverty rates, and correlated to mean
climatic temperature of the state, and to state-wise pre-covid-period antibiotic
prescription rate per capita (Rancourt, Baudin and Mercier, 2021b). We postulated that
vulnerable groups became more immune-deficient due to increased experienced
physio-psychological stress and social isolation, and mostly succumbed to bacterial

pneumonia, which is the dominant comorbidity (40-60%) reported in the CDC covid
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mortality data, at a time when antibiotic prescription rates show an unprecedented

decrease (Rancourt, Baudin and Mercier, 2021b).

In the present article, we extend our epidemiological analysis using consolidated ACM
data (by month, by week, by state, and by age group) up to week-5 of 2022 (week
ending on February 5, 2022), which gives us 100 weeks since the WHO’s 11 March

2020 declaration of a pandemic.

Our goal is three-fold:
(1) Accurately quantify excess mortality (ACM) during the covid period in the USA
(2) Look for socio-economic factors that correlate to time-integrated excess ACM per
capita, by state
(3) Examine whether any impact of the COVID-19 vaccination campaign, which was

implemented in 2021, can be detected and quantified

Presently (as of July 14, 2022), a total of 221,924,152 people are fully vaccinated
against COVID-19 (Johns Hopkins, 2022) in a population of 332,878,208 (US Census
Bureau, 2022a), following an unprecedented vaccination campaign, which was largely
accomplished in the last 50 weeks of the covid period up to week-5 of 2022.
e Has this massive campaign had any measurable impact, positive or negative, on
the all-cause mortality in the USA, for any discerned age group?
e Can such an impact be detected in delayed or immediate synchronicity with the
dose delivery rates for the different age groups?
e Are there important differences in ACM by time and by age group for the periods
(within the covid period) prior to and following vaccine dose delivery, and how

should such differences be interpreted if they occur?
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2. Data
Table 1 describes the data used in this work and the sources of the data.
Data Country Period Time unit Filters Source
State, sex,
ACM USA 1999-2021* | Month CDC, 2022a
age group*
State, age
ACM USA 2015-2022** | Week CDC, 2022b
group?
Vaccines USA 2020-2022* | Day Age group® | CDC, 2022c
. State, age
Vaccines USA 2020-2022** | Day CDC, 2022d
group*
Obesity USA 2020 Year State CDC, 2021
US Census
) State, sex,
Population USA 2010-2020% | Year Bureau,
age group®
2021
US Census
Poverty USA 2020 Year State Bureau,
2022b
US Census
MHI USA 2020 Year State Bureau,
2022b
SSI USA 2020 Year State SSA, 2022a
SSDI USA 2020 Year State SSA, 2022b
Disabled
Disability USA - - State
World, 2020

Table 1. Data retrieved. In this work, USA is composed of 51 states, including the District of
Columbia, Alaska and Hawaii, unless otherwise stated in the text.

* These data are a combination of the data found in CDC 2022a: data for the years 1999 to
2020 were downloaded under the “Current Final Multiple Cause of Death Data” section of the
reference (on November 17, 2021 for the years 1999 to 2019 and on May 18, 2022 for the year
2020), and data for the year 2021 was downloaded under the “Provisional Multiple Cause of
Death Data” section of the reference on May 18, 2022. The complete series is thus from
January 1999 to December 2021.

** At the date of access, data were available from week-1 of 2015 (week ending on January 10,
2015) to week-19 of 2022 (week ending on May 14, 2022). Usable data are until week-5 of 2022
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(week ending on February 5, 2022) due to unconsolidated data in later weeks, which gives a
large artifact (anomalous drop in mortality).

* At the date of access, data were available from Sunday December 13" 2020 to Wednesday
May 4" 2022.

** At the date of access, data were available from Sunday December 13™ 2020 to Sunday April
24" 2022.

8 In this work, we use the population data of the year 2020.

111 age groups: <1, 1-4, 5-14, 15-24, 25-34, 35-44, 45-54, 55-64, 65-74, 75-84, 85+

2 6 age groups: 0-24, 25-44, 45-64, 65-74, 75-84, 85+

39 age groups: <5, 5-11, 12-17, 18-24, 25-39, 40-49, 50-64, 65-74, 75+

4 4 age groups: 5+, 12+, 18+, 65+

5 86 age groups: by 1 year age group, from 0 to 85+

The vaccines data are daily cumulative data; when shown together with all-cause
mortality by week data, the last day of the week is used (the Saturday) as a data point,
so that both ACM and vaccination data correspond to the same time point (end of week
for both).
The vaccines data presented in this work correspond to three data type (CDC, 2022c):
e Atleast 1 dose, corresponds to the “total count of people with at least one dose”.
e Fully vaccinated, corresponds to the “total count of people who are fully
vaccinated”.
e Booster, corresponds to the “total count of people aged 12 years and older with a
booster dose”.
According to the CDC, a person is considered fully vaccinated when they “have second
dose of a two-dose vaccine or one dose of a single-dose vaccine”.

A booster dose is an additional dose given to a fully vaccinated person.

For all the scatter plots presented in this article, the following color-code is applied for
the 51 states of the USA:

® California ®Texas ® Florida ® New York ® Pennsylvania ®lllinois ® Ohio ® Georgia ® North Carolina ® Michigan
Alabama ® Alaska ® Arizona ® Arkansas ® Colorado ® Connecticut ® Delaware ® District of Columbia ® Hawaii
Idaho ®Indiana ®lowa ® Kansas ®Kentucky ® Louisiana ® Maine ® Maryland ® Massachusetts ® Minnesota

@ Mississippi ® Missouri ® Montana @ Nebraska ® Nevada ® New Hampshire ® New Jersey ® New Mexico

® North Dakota ® Oklahoma ® Oregon ®Rhode Island ®South Carolina @ South Dakota © Tennessee ®Utah

Vermont © Virginia ® Washington ®West Virginia © Wisconsin ® Wyoming
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3. Results

3.1. USA all-cause mortality by month, 1999-2021

3.1.1. Historic trend, normal pre-covid period seasonal pattern

Figure 1 shows the all-cause mortality by month (ACM/m) for the USA from January
1999 to December 2021.

ACM/m, USA, 1999-2021

350K

300K |

Deaths/m

250K

200K

2000 2005 2010 2015 2020

Figure 1. All-cause mortality by month in the USA from 1999 to 2021. Data are displayed
from January 1999 to December 2021. The vertical dark-blue line indicates the month of
February 2020, intended to point the beginning of the covid period. Data were retrieved from

CDC (CDC, 2022a), as described in Table 1.

The usual seasonal variations are evident, exhibiting a regular pattern of mortality
maximums in winter and mortality minimums in summer. The summer troughs follow a
straight-line trend on a decadal or shorter timescale. On Figure 1 we discriminate two
such periods: 2000-2008 and 2009-2019.
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ACM/m has artifacts caused by the months having different numbers of days, unlike
weeks (which always have 7 days). The most noticeable such artifact is the dip for the
month of February, which usually has only 28 days. This allows the viewer to spot

February in each winter season.

The regular seasonal pattern of mortality by month in the USA since 1999 is broken
after February 2020 (Figure 1, vertical dark-blue line) when large anomalies occur. The
anomalies occur in what we define as the covid period, starting after the 11 March 2020

WHO declaration of a pandemic.

We showed and discussed these anomalies in detail recently, for ACM by week
(ACM/w) for the USA from week-1 (beginning of January) of 2013 to week-37 (mid-
September) of 2021 (Rancourt, Baudin and Mercier, 2021b).

3.1.2. Anomalies in the covid period

In the covid period, after February 2020, we note the same peaks or features that we
have previously described and interpreted (Rancourt, Baudin and Mercier, 2021b),
using the nomenclature from our previous article:

e cvpl (March-May 2020)

e smpl (summer 2020)

e cvp2 (winter 2020-2021)

e smp2 (late-summer 2021)

Figure 2 shows those features with their labels.
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ACM/m, USA, 2016-2021

380K cvp2
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320K smp2
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240K
220K
200K
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Figure 2. All-cause mortality by month in the USA from 2016 to 2021. Data are displayed
from July 2016 to December 2021. The cvpl, smpl, cvp2 and smp2 features discussed in the
text are indicated. The vertical dark-blue line represents the month of February 2020, intended
to point the beginning of the covid period. Data were retrieved from CDC (CDC, 2022a), as

described in Table 1.

The anomalies in the covid period are as follows:
e A mortality peak late in the 2020 winter season, cvpl (from February to June
2020, Figure 2).
e Peaks of mortality in the summers 2020 and 2021, smpl and smp2, respectively,
when mortality values are usually at their lowest. On Figure 2 specifically:
o smpl from June to September 2020
o smp2 from July to November 2021 (connecting with the winter 2021-2022)
e A large mortality peak in the winter 2020-2021, cvp2 (from September 2020 to
April 2021, Figure 2), which surpasses in magnitude any single winter mortality

peaks since at least 1999 (Figure 1).

In the next section, we use the monthly ACM data to quantify the total excess mortality

that occurred in the covid period, which contains these anomalies.
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3.1.3. Quantifying excess mortality of the covid period, by age group and sex

We use the ACM/m data of Figure 1 to quantify the excess deaths of the covid period

“to date”, compared to the historic trend, as follows.

For a given age group and sex, we add all the monthly deaths together, for the months
of March-2020 (start of the pandemic period; announced by the WHO on 11 March
2020) through to the latest useable month (December 2021). This is a total for 22
months (the covid period “to date”). We call this total “m22c”. Then we perform a similar
total for the 1st-prior 22-month period, immediately preceding the covid period, for the
22 months up to and including February 2020. We call this total “m22c-1". And we do
the same for the 2nd-prior 22-month period, and we call this total “m22c-2”. We
continue moving back in time, to the end of the useable data in 22-month periods:

m22c-3, etc.

Figure 3 shows the graph of “m22c-x” versus time, together with the ACM/m for the
USA where each 22-month period has been emphasized with a different color.

ACM/m, USA, 2000-2021
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Figure 3. All-cause mortality by month (colors) and by 22-month period (black) in the
USA from 2000 to 2021. Data are displayed from January 2000 to December 2021. The
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different colors indicate the successive 22-month periods. The last light-blue color corresponds
to the covid period. All the other previous colors are in the pre-covid period. The black line
shows the integration of these successive 22-months periods. Data were retrieved from CDC
(CDC, 2022a), as described in Table 1.

Figure 3, based on more than two decades of data, dramatically illustrates the sudden
change in regime of ACM by time, both in magnitude of time-integrated ACM and in
seasonal behaviour of ACM by time, occurring as soon as the WHO on 11 March 2020
announced a pandemic. In addition, the covid-period regime of ACM by time is
characterized by large (and unprecedented in the historic record) heterogeneity by state
of ACM, which is not shown in such a figure for the whole USA, but which can be
appreciated in the ACM/w by state graphs of Appendix A.

In Figure 3, each dot of the 22-month period deaths corresponds to the integration of
deaths by month from the month of the dot to the previous month of the next dot,
included. So the integrated deaths are shown at the beginning of each integration

period (emphasized with colors).

With the integrated mortality by 22-month periods, we can spot a plateau of deaths from
2000 to 2010, an increase from 2010 to 2019, and the break between the pre-covid
period and the covid period (2020).

Figure 4 shows the integration of the 22-month periods with ACM/m for each of the 10-

year age groups.

Figure 4. All-cause mortality by month (light-blue) and by 22-month period (dark-blue) in
the USA from 2000 to 2021, for each of the age groups. Data are displayed from January
2000 to December 2021. Panels below: (A) for the 0-14 years age group; (B) for the 15-24
years age group; (C) for the 25-34 years age group; (D) for the 35-44 years age group; (E) for
the 45-54 years age group; (F) for the 55-64 years age group; (G) for the 65-74 years age
group; (H) for the 75-84 years age group; (I) for the 85+ years age group. Data were retrieved
from CDC (CDC, 2022a), as described in Table 1.
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ACM/m, USA, 25-34 age group, 2000-2021
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ACM/m, USA, 45-54 age group, 2000-2021
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ACM/m, USA, 65-74 age group, 2000-2021
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ACM/m, USA, 85+ age group, 2000-2021
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Figure 4 is hard raw data that allows one to robustly evaluate a covid-period fatality risk
(covid-period excess mortality compared to the historic trend of pre-covid-period
mortality) for each age group. Here, with an eye to more than two decades of data for
the whole USA.

Except for the younger age group (the 0-14 year-olds, Figure 4A), we can see the break
in mortality from the covid period for all the age groups: mortality by month reaches a
new higher plateau and mortality by 22-month period has an increase beyond the one
expected from the historic trend (Figure 4B, C, D, E, F, G, H, I). This is especially true
for the 25-34 and 35-44 year-olds (Figure 4C and D), which experience close to a 50%
increase in the covid period compared to the period of same duration immediately

before.

Next, for a given age group and sex, we calculate the excess deaths of the covid period

“to date” using two different assumptions, as follows.

In the first assumption, we take the “excess deaths of the covid period” to mean the (all-

cause) deaths above the deaths that would have occurred if the same circumstances
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would have prevailed during the covid period as prevailed in the 1st-prior 22-month
period, immediately preceding the covid period. Under this assumption, the excess
deaths of the covid period, due to everything different or extraordinary that occurred or

was imposed during the covid period, for a given age group and sex, is simply:
xDc(22)1 = m22c¢c - m22c-1 (1)

In the second assumption, we take the “excess deaths of the covid period” to mean the
(all-cause) deaths above the deaths that would have occurred if the same
circumstances would have prevailed during the covid period as prevailed in the 2nd-
prior 22-month period, the period preceding the 1st-prior 22-month period before the
covid period. Under this assumption, the excess deaths of the covid period, due to
everything different or extraordinary that occurred or was imposed during the covid

period, for a given age group and sex, is:
xDc(22)2 = m22c - m22c-2 (2)

These formulas (Equations 1 and 2) are justified because m22c-1 and m22c-2 are
different and fair estimates of what mortality would have been in the 22-month covid
period if the events associated with the declared pandemic had not occurred. In other
words, m22c-1 and m22c-2 are fair historical projected values of what the covid-period
mortality “would have been”. Judging from Figure 3 and Figure 4, there would be little
benefit from applying a more mathematically sophisticated extrapolation method, while
using both reference values allows one to estimate the uncertainty in our determinations

of excess mortality for the covid period.

The relative magnitudes of the covid-period extra deaths above the historic trend are:

xDc(22)1% = xDc(22)1 / m22c-1, expressed as a percentage, (3)
and
xDc(22)2% = xDc(22)2 | m22c-2, expressed as a percentage, (4)
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Table 2 contains the calculated covid-period excess mortality, for each age group and
sex for the USA, and for all ages and both sexes for the entire USA (“Total”), using each
assumption described above, and the relative changes also, as percentages of the

reference values in Equations 1 and 2 (m22c-1 and m22c-2, respectively).
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Age Group

=1
Female
hale
1-4
Female
Male
5-14
Female
hale
15-24
Female
Male
25-34
Female
iale
35-44
Female
Male
45.54
Female
hale
55-64
Female
Iale
65-74
Female
Male
75-84
Female
Iale
285+
Female
hale
Total

ma2c

31904
13 964

17 940
1923
736
1187
4674
1510

3 1e4d

B5 773
16 369
49 404
143 510
41 427
102 083
213 567
73111
140 458
378 936
140 457
238479
852 061
325 443
523613
1297 690
544 643
753047
1527 855
730 408
797 447
1797 070
1088 768
708 302

m22ec-1

34 762
14 9504
19 858
13881
571
1210
4086
1376
2708
51324
12 526
38798
106 589
31335
75 254
149 601
52 602
96 999
2095 773
113 601
182172
686 034
268 402
A17 632
1009 880
A28 337
581 543
1247 039
604 010
543 029
1586373
973 291
B13 082

6314963 5173 342

m22c-2

37 249
16 122
21127
2077
B34
1393
4323
1553
2770
55119
13 484
41 635
107 228
31626
75602
143 962
51876
92 086
312 760
122 230
190 530
683 414
2638 976
414 438
976 016
417 570
558 446
1211 460
591 544
619 916
1622 052
1004 787
B17 265

xDe(22)1

-2 858
-940
-1918
42

B5

-23

Sas

132

456

14 449
3843
10 606
36 921
10 092
2b 829
63 966
20509
43 457
831863
2b 856
56 307
166 027
60 041
105 986
287 810
116 306
171 504
280 818
126 398
154 418
210 697
115 477
95 220

x¥Dc(22)2

.5 345
2158
3187

-154
52
-206
351
-43
394
10 654
2 885
7769
36 282
9 801
26 481
69 605
21235
48 370
66 176
18 227
A7 949

168 647
59 467

109 180

321674

127 073

194 601

316 395

138 864

177 531

175 018
83 981
91037

5155660 1141621 1159 303

28

¥Dc(22)1%  xDo(22)2%

-822 %
631%
9,66 %
223 %
9,69 %
-1,90 %

14,39 %
9,58 %
16,84 %

28,15 %
30,68 %
27.34 %

34,64 %
32.21%
35,65 %

42,76 %
38,99 %
44,80 %

28,12 %
23,64 %
30,91 %

24,20 %
22,37 %
2538 %

28,50 %
2715 %
29,49 %

22,52 %
20,93 %
2401 %

13,28 %
11,86 %
15,53 %

22,07 %

-14,35 %
-13.39 %
-15.08 %
-7.41 %
7.60 %
-14,79 %
812 %
-2.77 %
14,22 %
19,33 %
21,40 %
18,66 %
33,84 %
30,99 %
3503 %
48,35 %
40,93 %
52,53 %
21,16 %
14,91 %
2517 %
24,68 %
2211 %
26,34 %
32,96 %
3043 %
34,85 %
26,12 %
2347 %
28,64 %
10,79 %
8,36 %
14,75 %
22,49 %

Table 2. Estimated excess mortality of the covid period in the USA, by age group and by
sex. m22c is the total deaths during the covid period (from March 2020 to December 2021,
included). m22c-1 is the total deaths during the 1st-prior 22-month period before the covid
period (from May 2018 to February 2020, included). m22c-2 is the total deaths during the 2nd-
prior 22-month period before the covid period (from July 2016 to April 2018, included). xDc(22)1
and xDc(22)2 correspond to the excess mortality in the covid period, calculated from Equation 1
and Equation 2, respectively. xDc(22)1% and xDc(22)2% correspond to the relative changes,
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calculated from Equation 3 and Equation 4, respectively. ACM data were retrieved from CDC
(CDC, 2022a), as described in Table 1.

One of the most surprizing results from the above calculations is that young adults were
severely negatively impacted in the covid period, more so in comparative terms (percent
mortality increase relative to pre-covid values) than elderly persons. This is explored
further, below.

In the next section, we follow the same method to estimate the excess mortality of the
covid period in the USA from a different dataset: the all-cause mortality by week
(ACM/w).

3.2. USA all-cause mortality by week, by age group, 2015-2022

3.2.1. Historic trend, discontinuous break on 11 March 2020, entering the covid period

Figure 5 shows the all-cause mortality by week (ACM/w) for the USA from January 2015
to January 2022.
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Figure 5. All-cause mortality by week in the USA from 2015 to 2022. Data are displayed
from week-1 of 2015 to week-5 of 2022. The vertical dark-blue line indicates the week-11 of
2020 (week of 11 March 2020, when WHO declared a pandemic), intended to point the
beginning of the covid period. The cvpl, smpl, cvp2 and smp2 features discussed in the text
are indicated. Data were retrieved from CDC (CDC, 2022b), as described in Table 1.

The regular seasonal variation of mortality is seen from 2015 to early 2020, and from
week-11 of 2020 (the week the WHO declared a pandemic), a new pattern of mortality
(new regime of ACM by time) occurs (Figure 5, after the vertical dark-blue line). This

new pattern includes the previously discussed features: cvpl, smpl, cvp2, smp2.

In the next section, we use the weekly ACM data to quantify the total excess mortality

that occurred in the covid period, which includes these anomalous features.

3.2.2. Quantifying the excess mortality of the covid period, by age group

We use the ACM/w data of Figure 5 to quantify the excess deaths of the covid period “to

date”, compared to the historic trend, as follows.

For a given age group, we add all the weekly deaths together, for the weeks of 11
March 2020 (week-11 of 2020, start of the pandemic period; announced by the WHO on
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11 March 2020) through to the latest useable week (week-5 of 2022, beginning of
February 2022). This is a total for 100 weeks (the covid period “to date”). We call this
total “w100c”. Then we perform a similar total for the 1st-prior 100-week period,
immediately preceding the covid period, for the 100 weeks up to and including week-10
of 2020. We call this total “w100c-1". And we do the same for the 2nd-prior 100-week
period, and we call this total “w100c-2". We cannot move back further in time with this
dataset, as the “w100c-3” would be incomplete (less than a 100 weeks, with the

available data).

Figure 6 shows the graph of “w100c-x" versus time, together with the ACM/w for the
USA where each 100-week period has been emphasized with a different color; thus

applying the same method as in producing Figure 3.

ACM/w, USA, 2016-2022
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Figure 6. All-cause mortality by week (colors) and by 100-week period (black) in the USA
from 2016 to 2022. Data are displayed from week-19 of 2016 to week-5 of 2022. The different
colors indicate the successive 100-week periods. The light-blue color corresponds to the covid
period. The dark-blue and the orange colors are in the pre-covid period. The black dots show
the integrated ACM on these 100-week periods. Data were retrieved from CDC (CDC, 2022b),
as described in Table 1.
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Figure 6, based on more than 7 years of data, here time-resolved by week, again (like
Figure 3) dramatically illustrates the sudden change in regime of ACM by time, both in
magnitude of time-integrated ACM and in seasonal behaviour of ACM by time, occurring
as soon as the WHO on 11 March 2020 announced a pandemic. In addition, the covid-
period regime of ACM by time is characterized by large (and unprecedented in the
historic record) heterogeneity by state of ACM, which is not shown in such a figure for
the whole USA, but which can be appreciated in the ACM/w by state graphs of
Appendix A.

For the whole USA (all states and all ages together), the increase in ACM between the

pre-covid and the covid period is close to 25% (Figure 6).

The mortality data (Figure 6) can be resolved by age group, which is shown, as follows,
in Figure 7.

Figure 7. All-cause mortality by week (light-blue) and by 100-week period (dark-blue) in
the USA from 2016 to 2022, for each of the age groups. Data are displayed from week-19 of
2016 to week-5 of 2022. Panels below: (A) for the 0-24 years age group; (B) for the 25-44 years
age group; (C) for the 45-64 years age group; (D) for the 65-74 years age group; (E) for the 75-
84 years age group; (F) for the 85+ years age group. Data were retrieved from CDC (CDC,
2022h), as described in Table 1.
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ACM/w, USA, 65-74 age group, 2016-2022
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Except for the younger age group (the 0-24 year-olds, Figure 7A), the integrated
mortality of the covid period is much larger than in any of the two previous 100-week
periods (Figure 7B, C, D, E, F). These results are comparable to those illustrated in

Figure 4.

It is interesting to note that the sudden rise in ACM, immediately following the WHO’s 11
March 2020 declaration of a pandemic, which we have discussed in several previous
articles (Rancourt, 2020; Rancourt, Baudin and Mercier, 2020, 2021a, 2021b), occurs in
all the age groups for the whole USA (Figure 7; and see Figure 4), not solely in the most
elderly populations as reports of severe COVID-19 morbidity might lead one to conclude
(e.q., Elo et al., 2022; Sorensen et al., 2022). This, in itself, suggests that the covid-
period deaths are not predominantly explained by the postulated SARS-CoV-2
pathogen.

Next, for a given age group, we calculate the excess deaths of the covid period “to date”
using our simplest assumption from above. We take the “excess deaths of the covid
period” to mean the (all-cause) deaths above the deaths that would have occurred if the
same circumstances would have prevailed during the covid period as prevailed in the

1st-prior 100-week period, immediately preceding the covid period. Under this
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assumption, the excess deaths of the covid period, due to everything different or
extraordinary that occurred or was imposed during the covid period, for a given age

group and state, is:
xDc(100)1 = w100c - w100c-1 (5)

In the second assumption, we take the “excess deaths of the covid period” to mean the
(all-cause) deaths above the deaths that would have occurred if the same
circumstances would have prevailed during the covid period as prevailed in the 2nd-
prior 100-week period, the period preceding the 1st-prior 100-week period before the
covid period. Under this assumption, the excess deaths of the covid period, due to
everything different or extraordinary that occurred or was imposed during the covid

period, for a given age group and state, is:
xDc(100)2 = w100c - w100c-2 (6)

As with Equations 1 and 2 above, these formulas (Equations 5 and 6) are justified
because w100c-1 and w100c-2 are different and fair estimates of what mortality would
have been in the 100-week covid period if the events associated with the declared
pandemic had not occurred. In other words, w100c-1 and w100c-2 are fair historical
projected values of what the covid-period mortality “would have been”. Judging from
Figure 6 and Figure 7, there would be little benefit from applying a more mathematically
sophisticated extrapolation method, while using both reference values allows one to

estimate the uncertainty in our determinations of excess mortality for the covid period.

The relative magnitudes of the covid-period extra deaths above the historic trend are:

xDc(100)1% = xDc(100)1 / w100c-1, expressed as a percentage, (7)
and
xDc(100)2% = xDc(100)2 / wl00c-2, expressed as a percentage, (8)
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Table 3 contains the thus calculated covid-period excess mortality, for each age group
for the USA, and for the entire USA (“Total”), using each assumption described above,
and the relative changes also, as percentages of the reference values in Equations 5

and 6 (w100c-1 and w100c-2, respectively).

Age Group w100c w100c-1 w100c-2 *Dc(100)1  xDc(100)2  xDc(100)1% xDc(100)2%

0-24 119 621 106 833 114 753 12 788 4 868 11,97 % 4,24 %
25-44 375 881 266 917 261 359 108 964 114 522 40,82 % 43,82 %
45-64 1304887 1031015 1044 091 273872 260 796 26,56 % 2498 %
65-74 1377235 1058708 1016822 318 527 360 413 30,09 % 3545 %
75-84 1621693 1305924 1259881 315769 361812 24,18 % 28,72 %
85+ 1900921 1661094 1685547 239 827 215 374 14,44 % 12,78 %
Total 6700238 5430491 5382453 1269747 1317785 23,38% 24,48 %

Table 3. Estimated excess mortality of the covid period in the USA, by age group. wl100c
is the total deaths during the covid period (from week-11 of 2020 to week-5 of 2022, included).
w100c-1 is the total deaths during the 1st-prior 100-week period before the covid period (from
week-15 of 2018 to week-10 of 2020, included). w100c-2 is the total deaths during the 2nd-prior
100-week period before the covid period (from week-19 of 2016 to week-14 of 2018, included).
xDc(100)1 and xDc(100)2 correspond to the excess mortality in the covid period, calculated
from Equation 5 and Equation 6, respectively. xDc(100)1% and xDc(100)2% correspond to the
relative changes, calculated from Equation 7 and Equation 8, respectively. ACM data were
retrieved from CDC (CDC, 2022b), as described in Table 1.

Equivalents to Table 3 for each of the states of the USA can be found in Appendix A.

Not surprisingly, we find the same results as with the ACM/m data, where young adults

were relatively more impacted in the covid period than elderly persons.

In the next section, we explore the excess mortality of the covid period at the state level.

3.2.3. Excess mortality of the covid period, by state

Figure 8 shows USA maps of the state-wise values of the covid-period excess mortality
(xDc(100)1), as relative changes in percentage of the pre-covid period mortality

(xDc(100)1%) (Panel A), and xDc(100)1 per state population (Panel B), for comparison.
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Figure 8. Maps of the excess mortality of the covid period in the USA, as percentages of
the pre-covid period mortality (panel A) and as normalized by state population (panel B).
Alaska and Hawaii are excluded. The darker the color (black), the more intense is the relative

change. ACM data were retrieved from CDC (CDC, 2022b) and population data were retrieved
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from US Census Bureau (US Census Bureau, 2021), as described in Table 1. xDc(100)1 and
xDc(100)1% are calculated from Equation 5 and Equation 7, respectively.

These maps (Figure 8) can be compared to the maps of poverty and obesity shown in
Appendix B; and to the maps from Rancourt et al. (Rancourt, Baudin and Mercier,
2021b) of life expectancy (their Figure 38a), antibiotic prescriptions (their Figure 38b),
average climatic temperature (their Figure 22), intensity of the smpl mortality (their
Figure 16), intensity of the cvpl mortality (their Figure 15). Some of these comparisons

are discussed further below.

Generally, high 100-week covid-period mortality per capita or per baseline mortality
occurs in the Southern states, and in the hottest climatic state of Arizona. This is similar
to what we have reported previously for summer-season covid mortality (Rancourt,
Baudin and Mercier, 2021b). Below we show that state-wise covid-period mortality is
very strongly correlated (r = +0.86) to state-wise poverty, and also correlated to median
household income, obesity, disability, and government subsidy programs; which in turn
are known to be correlated to each other and to diabetes prevalence, life expectancy,
and antibiotic prescriptions. All of this is consistent with the geographical pattern shown

in Figure 8.

Figure 9 shows the xDc(100)1% (Equation 7) values from Table 3 by age group, for the
whole USA (Panel A), and for the ten most populous states (Panel B), ordered from the
most populous to the less populous (US Census Bureau, 2022a): California, Texas,
Florida, New York, Pennsylvania, lllinois, Ohio, Georgia, North Carolina and Michigan.
The horizontal dashed line represents the value for the whole USA (all ages and all

states).
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xDc(100)1%, USA, by age group
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Figure 9. Excess mortality of the covid period in the USA (panel A) and in the ten most
populous states of the USA (from left to right in each band: California, Texas, Florida,
New York, Pennsylvania, lllinois, Ohio, Georgia, North Carolina, Michigan) (panel B), as
percentages of the pre-covid period mortality, by age group. The constant dashed line
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represents the value for the whole USA. ACM data were retrieved from CDC (CDC, 2022b), as
described in Table 1. xDc(100)1% is calculated from Equation 7.

Figure 9 illustrates one of the most striking features of mortality in the covid period: The
relative covid-period excess mortality (covid-period fatality risk ratio, relative to pre-covid
mortality) is broadly distributed to all age groups and is not exponential or near-
exponential with age as determined for viral respiratory diseases, including COVID-19,

when these are the verified dominant cause of death.

Indeed, we note that all age groups were significantly differentially affected in the covid
period, which is inconsistent with the reported infection fatality ratios (morbidity) that
generally increase exponentially with age, as is also the case for many chronic diseases
and for all-cause mortality risk itself (e.g., Richmond et al., 2021; Elo et al., 2022;
Sorensen et al., 2022). Again, this suggests that the covid-period deaths are not
predominantly explained by the postulated SARS-CoV-2 pathogen. Rather, risk of death
in the covid period appears to result from distributed aggression against vulnerable

populations in all the age groups, not predominantly (or exponentially) the elderly.

We see from Figure 9 that young adults (25-44 years) were particularly devastated by
the events and conditions of the covid period. It is not unreasonable to postulate that
this age group would have been most impacted by the large-scale life-changing
economic and job-loss changes that occurred in the covid period, or that this age group
would have been most devastated by social isolation and institutional abandonment for
those who are mentally disabled or otherwise dependent on a fragile social support

network.

Next, we examine whether any impact of the mass and age-distributed USA vaccination
campaign can be detected and quantified.
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3.3. Time and age-group variations of mortality during the covid period, and
relation to implementation of the vaccination campaign

3.3.1. All-cause mortality by week and vaccination delivery by week, by age group,
2019-2022

In our previous article about ACM in the USA (Rancourt, Baudin and Mercier, 2021b),

we stated the following about the vaccination campaign:

“Readers who would be tempted to ascribe the downturn in the cvp2 peak to the
vaccination campaign should note that the downturn coincides with the
expected seasonal downturn of every seasonal winter maximum that has ever

been observed by epidemiologists in the last century or more.

More importantly, the largely completed vaccination campaign did not prevent a
second surge of summer deaths (2021, “smp2”) (Figure 31). The mortality in the
said second surge appears to be comparable to or more than the mortality for
summer-2020. Furthermore, the COVID-19-assigned deaths (CDC, 2021a) are
significantly greater in number in summer-2021 than in summer-2020 (Figure
34), and, unlike at any other time in the COVID-era, account for virtually all the
excess (above-SB) deaths, in the summer-2021 feature (smp2) (Figure 34),

following the vaccination campaign.

There is no sign in the ACM/w that the vaccination campaign has had any
positive effect. However, given that the vaccination campaign starts well after
the 2020 summer and essentially ends mid-summer-2021 prior to the start of
the smp2 feature, given that the 2021 excess (above-SB) summer deaths
(smp?2) occur in significantly younger individuals than the excess summer-2020
deaths, and given that the smp2 feature is significantly larger than the smp1
feature for the said younger individuals (35-54 years, Figures 33d and 33e; and
55-64 years, Figure 33f, to a lesser degree), it is possible that vaccination made
35-54 year olds and others more vulnerable to death, especially summer death
in disadvantaged individuals in hot-climate states (Montgomery et al., 2021)
(Simone et al., 2021).”



258

43

Here, we examine this question again, via the time and age-group variations in structure
of the ACM/w (Figure 5 and Figure 7) in the covid period, using the most up-to-date

consolidated data.

Figure 10 shows the all-cause mortality by week (ACM/w) for the USA from January
2019 through January 2022, together with vaccination data, for all the available age

groups.

Figure 10. All-cause mortality by week (light-blue), cumulated number of people with at
least one dose of vaccine (dark-blue), cumulated number of fully vaccinated people
(orange) and cumulated number of people with a booster dose (yellow) by week in the
USA from 2019 to 2022, for all and each of the age groups. Data are displayed from week-1
of 2019 to week-5 of 2022. The vertical solid line indicates week-11 of 2020 (week of 11 March
2020, when WHO declared a pandemic), indicating the beginning of the covid period. The
vertical dashed line indicates week-8 of 2021, dividing the covid period into two periods of 50
weeks each: the pre-vaccination period (before the dashed line) and the vaccination period
(after the dashed line). Panels below: (A) for all ages; (B) for the 0-24 years age group; (C) for
the 25-44 years age group; (D) for the 45-64 years age group; (E) for the 65-74 years age
group; (F) for the 75+ years age group. Data were retrieved from CDC (CDC, 2022b, 2022c), as
described in Table 1.
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ACM/w, USA, 0-24 age group, 2019-2022
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The booster data for this age group only concern people aged 12 years and older.

ACM/w, USA, 25-44 age group, 2019-2022
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For the vaccination data of this age group, the solid lines are for the 25-39 year olds and the
dashed lines are for the 25-49 year olds. That is because the available age groups for the
mortality data don’t exactly match the available age groups for the vaccination data.
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ACM/w, USA, 45-64 age group, 2019-2022
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For the vaccination data of this age group, the solid lines are for the 40-64 year olds and the
dashed lines are for the 50-64 year olds. That is because the available age groups for the

mortality data don’t exactly match the available age groups for the vaccination data.

ACM/w, USA, 65-74 age group, 2019-2022
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ACM/w, USA, 75+ age group, 2019-2022
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Figure 10 is a key figure in the present article because it allows an investigation of
whether accelerations of vaccine delivery are synchronous or near-synchronous with
surges (vaccine-induced death) or subsequent drops (vaccine-induced protection
against death) in ACM, for all ages (Figure 10A) and by age group (Figure 10 B, C, D,
E, F). In this regard, we make the following observations.

e First, one might be tempted to mechanistically associate the initial and most
important surge in 1st-dose vaccine delivery with the large drop in mortality that
for several age groups occurs at about the same time (in March-2021 for all
ages, Figure 10A). This is incorrect for the following reasons:

o The drop in mortality is expected from purely seasonal considerations:
high mortality in the winter always drops eventually.

o The cvpl at the end of the winter occurring in the pre-vaccination period of
the covid period saw an eventual large decrease, months before the start
of the vaccination campaign.

o Thereis an increase in ACM in the 0-24 years age group, rather than a
decrease (Figure 10B), and similarly for the 25-44 years age group (Figure
10C). The vaccine would need to be harmful or beneficial regarding death,

depending on the age group.
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o For the 45-64, 65-74 and 75+ years age groups, the 2020-2021 winter
peak in ACM occurs in the same way even though the vaccine-delivery
upsurge is at different times, because the most elderly were vaccinated
first (Figure 10D, E, F). The vaccine’s life-saving properties would need to
be strongly dependent on age for these ages.

Second, it is clear that the prominent late-summer-2021 peak in ACM (all ages,
and all age groups except 0-24 years) is far in excess of any proportionate
increase in vaccination-dose delivery. The said late-summer-2021 peak occurs in
a period during which the cumulative vaccine dose delivery is essentially regular,
without a large fractional step-wise increase.

Third, the latter observation notwithstanding, there is nonetheless a modest but
statistically significant stepwise increase in 1st-dose vaccine delivery, which is
synchronous with the late-summer-2021 peak in ACM, visible for all ages and for
the 25-44 and 45-64 years age groups (Figure 10A, C, D). This temporal
association is prominent in the data for many specific states (e.g., Figure 11),
and cannot easily be dismissed. It is discussed below.

While the second and third bullet points above appear to be contradictory, they
are not. On the one hand (second bullet point), neither large increases in ACM
(upsurge of the late-summer-2021 peak) nor large decreases in ACM (drop in
ACM ending the late-summer-2021 peak) can be interpreted as proportionately
driven by vaccine adverse effects, while on the other hand (third bullet point), a
modest stepwise upsurge in cumulative vaccine dose delivery may be causally
associated with a peak in ACM if the said stepwise upsurge includes increased
capture of immunocompromised residents. The two propositions (second and
third bullet points) and their implications are simultaneously possible because the
number of delivered vaccine doses is large compared to the number of excess
deaths (the per-dose fatality toxicity ratio of the vaccine is much smaller than 1),
as discussed more below.

Fourth, one might be tempted to mechanistically associate the increase in
cumulative booster-dose delivery with irregular increases in ACM in the late

stage of the covid period. This is incorrect for the following reasons:
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o The apparent association is confounded by the 2021-2022 winter
increase. Every winter, including during the covid period, has always had
increased ACM, in the entire recorded history of mid-latitude countries and
jurisdictions.

o Booster and concomitant first-series dose increases have an apparent
insignificant effect on ACM in the 0-24 years age group, and cause a
decrease if anything in the winter 2021-2022 season (Figure 10B).

o Boosters cause no special increase in ACM in the 25-44 years age group
(Figure 10C), which is the age group with the largest vaccination-period
relative increase in integrated ACM (see below).

o The 2021-2022 winter peaks in all the >24 years age groups have their
maxima at a time when the cumulative booster-dose delivery has

plateaued, after its period of most rapid increase (Figure 10A, C, D, E, F).

Data by age group shown in Figure 10 were only available at the national level. In the

next section, we look at vaccination data at the state level, with less defined age groups.

3.3.2. All-cause mortality by week and vaccination delivery by week, by state, 2019-
2022

Vaccination delivery by week data is available at the state level for the 18+ and the 65+
age groups (CDC, 2022d). By subtracting the data for the 65+ age group from the data

for the 18+ age group, we can calculate data for the 18-64 age group.

Figure 11 shows the all-cause mortality by week (ACM/w) for some states of the USA
from January 2019 through January 2022, together with vaccination data, for the 25-64

years or the 65+ years age groups.

Figure 11. All-cause mortality by week (light-blue), cumulated number of people with at
least one dose of vaccine (dark-blue), cumulated number of fully vaccinated people
(orange) and cumulated number of people with a booster dose (yellow) by week from
2019 to 2022, and by age group for some states. Data are displayed from week-1 of 2019 to
week-5 of 2022. Panels below: (A) Alabama, 25-64 years age group; (B) Mississippi, 25-64
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years age group; (C) Georgia, 25-64 years age group; (D) Florida, 25-64 years age group; (E)
Louisiana, 25-64 years age group; (F) Louisiana, 65+ years age group; (G) Michigan, 25-64
years age group; (H) Michigan, 65+ years age group. For the 25-64 years age group graphs,
the vaccination data is for the 18-64 years age group; because the available age groups for the
mortality data do not exactly match the available age groups for the vaccination data. The
discontinuous breaks in cumulative number of vaccinated individuals are artifacts. Data were
retrieved from CDC (CDC, 2022b, 2022d), as described in Table 1.

ACM/w, Alabama, 25-64 age group, 2019-2022

®Deaths @At least 1 dose ®Fully vaccinated ® Booster

650 2,0M
600 l
{ 2
550 15M 2
5
=}
500 =
o
k=
£ 450 E
= 1,0M 2
i S
2 400 g
=
o
350 / ]
i it
1 S
300 ‘ 0,5M E
250
200 . . - : - . 0,0M
janv. 2019 juil. 2019 janv. 2020 juil. 2020 janv. 2021 juil. 2021 janv. 2022

ACM/w, Mississippi, 25-64 age group, 2019-2022
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ACM/w, Georgia, 25-64 age group, 2019-2022
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ACM/w, Louisiana, 25-64 age group, 2019-2022
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ACM/w, Louisiana, 65+ age group, 2019-2022
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ACM/w, Michigan, 25-64 age group, 2019-2022
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Figure 11 illustrates the late-summer-2021 peak in ACM/w for the states of Alabama,
Mississippi, Georgia, Florida and Louisiana; and the unique spring-2021 (April-centered)

peak in ACM/w occurring for Michigan.

Here, the “modest but significant stepwise increase in 1st-dose vaccine delivery, which
is synchronous with the late-summer-2021 peak in ACM, visible for all ages and for the
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25-44 and 45-64 years age groups (Figure 10A, C, D)” discussed above for the whole
USA is now examined through the ACM/w and cumulative vaccine dose delivery by
week data for the states of Alabama, Mississippi, Georgia, Florida and Louisiana, where
the feature is prominent (Figure 11A, B, C, D, E, F), in the 25-64 years age group in
particular. These five states are examples of states in which the late-summer-2021 peak
is the most intense feature (largest peak) in the ACM/w data. In each case, the

synchronous stepwise increase in cumulative vaccine dose delivery is evident.

This association between late-summer-2021 peak and stepwise increase in vaccine
dose delivery is present throughout all the states: Where this is a most prominent late-
summer-2021 peak there is an evident synchronous stepwise increase in vaccine dose
delivery, and vice versa. The case of the state of Michigan shows a counter example:
There is no late-summer-2021 peak and there is no stepwise increase in vaccination
(Figure 11G, H).

However, the case of Michigan is shown for an additional reason: Michigan is the only
state that has a spring-2021 (April-centered) peak in ACM/w (Figure 11G, H). This is
arguably the most remarkable feature in all of the ACM data for the USA, since it occurs
only in one state and does not correspond to a local intense summer heatwave

phenomenon.

Michigan’s said spring-2021 peak in ACM/w occurs synchronously with Michigan’s
fastest increase in vaccine dose delivery for 18-64 year olds (Figure 11G). It occurs
when the vaccination campaign was “turned on” for this age group. This is also the time
(April-2021) when, for this age group, for the whole USA, vaccine delivery was at its
highest, and all reported vaccine adverse effects, including death, peaked (Hickey and
Rancourt, 2022; their Figure S2). The Janssen-shot deliveries (shots administered), in
particular, peaked strongly in approximately April-2021 (whole USA) (Hickey and
Rancourt, 2022; their Figure S1), and were CDC-recommended to be “paused”, and

then re-authorized at approximately that time, also (FDA, 2021, 2022).
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For Michigan, therefore, one is tempted to directly assign the unique spring-2021 peak
in mortality as directly caused by the vaccine injections. The vaccine fatality toxicity per
dose would need to be approximately 10 times greater than the known value for non-
immunocompromised subjects (Hickey and Rancourt, 2022; their Table 1). However, if
immunocompromised young adults (stressed and mentally disabled, and such, see
below) were captured by the vaccination campaign, then the causal link is entirely

possible.

Coming back to the big picture: The massive vaccination campaign in the USA did not
reduce all-cause mortality to a pre-covid-period level, overall or in any of the age
groups; nor does it appear to have substantially increased ACM during the vaccination

campaign, compared to the pre-vaccination period of the covid period (Figure 10).

In the next section, we use the method described above (in section 3.2.2) to
guantitatively assess whether the vaccination campaign measurably affected integrated
ACM.

3.3.3. Quantifying excess mortality of the pre-vaccination and vaccination periods of the
covid period, by age group

We adapt our method described in section 3.2.2 and use the ACM/w data of Figure 5 to
guantify the excess mortality of the vaccination period “to date”, compared to the excess

mortality of the pre-vaccination period of the covid period, as follows.

The idea is to test whether there is a significant systematic increase in mortality, by
state and by age group, occurring after the large increase in vaccination injections,
compared to the (equal duration) part of the covid period prior to the surge in
vaccination delivery, and compared to a pre-covid period of same duration occurring

immediately prior to the 11 March 2020 start of the covid period.
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For a given age group, we add all the weekly deaths together, for the weeks of 22
February 2021 (week-8 of 2021, inflection point of the vaccination period) through to the
latest useable week (week-5 of 2022, beginning of February 2022). This is a total for 50
weeks (the vaccination period “to date”). In analogy with our previously introduced
notation (above in section 3.2.2), we call this total “w50c”. Then we perform a similar
total for the 1st-prior 50-week period, immediately preceding the vaccination period, for
the 50 weeks up to and including week-7 of 2021. We call this total “w50c-1". These two
50-week periods of the covid period, divide the covid period into equal-duration pre-
vaccination (w50c-1) and vaccination (w50c) periods, which can be visualized with the
help of Figure 10A and Figure 12 (below). And we do the same for the 2nd-prior 50-
week period, and we call this total “w50c-2”. We continue moving back in time, to the

end of the useable data in 50-week periods: w50c-3, etc.

Figure 12 shows the graph of “w50c-x" versus time, together with the ACM/w for the

USA where each 50-week period is distinguished using a different color.
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Figure 12. All-cause mortality by week (colors) and by 50-week period (black) in the USA
from 2015 to 2022. Data are displayed from week-21 of 2015 to week-5 of 2022. The different
colors indicate the successive 50-week periods. The light-blue color corresponds to the
vaccination period of the covid period. The dark-blue color corresponds to the pre-vaccination
period of the covid period. All the other colors are in the pre-covid period. The black dots show
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the integrated ACM on these 50-week periods. Data were retrieved from CDC (CDC, 2022b), as
described in Table 1.

Equivalents to Figure 12 (without the color-code) for each of the states of the USA can

be found in Appendix A.

Contrary to what would be expected if we assumed that the injections themselves
induced a large (dominant) measurable positive or negative change in ACM, over a 50-
week integration period the integrated ACM in the vaccination period of the covid period
is comparable to and lower than in the pre-vaccination period of the covid period, for the
USA as a whole (Figure 12). Indeed, there is a much greater and discontinuous change
in ACM in going between the pre-covid period and the covid period than in going
between the pre-vaccination period of the covid period and the vaccination period of the

covid period.

The mortality data (Figure 12) can be resolved by age group, which is shown, as

follows, in Figure 13.

Figure 13. All-cause mortality by week (light-blue) and by 50-week period (dark-blue) in
the USA from 2015 to 2022, for each of the age groups. Data are displayed from week-21 of
2015 to week-5 of 2022. Panels below: (A) for the 0-24 years age group; (B) for the 25-44 years
age group; (C) for the 45-64 years age group; (D) for the 65-74 years age group; (E) for the 75-
84 years age group; (F) for the 85+ years age group. Data were retrieved from CDC (CDC,
2022h), as described in Table 1.
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ACM/w, USA, 0-24 age group. 2015-2022
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ACM/w, USA, 45-64 age group, 2015-2022
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ACM/w, USA, 65-74 age group, 2015-2022
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ACM/w, USA, 75-84 age group, 2015-2022
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ACM/w, USA, 85+ age group, 2015-2022
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The ACM by 50-week period resolved by age group shows that integrated ACM is
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higher in the vaccination period of the covid period than in the pre-vaccination period of

the covid period for all the younger age groups, under 75 years old (Figure 13A, B, C,

D).
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The integrated mortality by consecutive 50-week periods is shown for all the age groups
together in Figure 14, by normalizing all the 50-week periods by the first 50-week period

for each age group.

ACM by 50-week periods normalized by the first period, USA, by age group, 2015-2022
Age Group ®0-24 ®25-44 ®45-64 ®65-74 ®75-84 @85+
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Figure 14. All-cause mortality by 50-week period normalized by the first 50-week period in
the USA, from 2015 to 2022, for each of the age groups. Data are displayed from week-21 of
2015 to week-8 of 2021 (beginning of the vaccination period). ACM data were retrieved from
CDC (CDC, 2022b), as described in Table 1.

The only age groups for which ACM in the vaccination period of the covid period is
lower than ACM in the pre-vaccination period of the covid period are the 75-84 and 85+

age groups. All the other age groups show otherwise (Figure 14).

In order to quantify and directly compare the pre-vaccination period and the vaccination

period within the covid period, we define the following quantities:

pVax-pCVD/pCVD = (w50c-1 - w50c-2) / w50c-2, expressed as a percentage,
9)

and
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Vax-pCVD/pCVD = (w50c - w50c-2) / w50c-2, expressed as a percentage,
(10)

Where w50c is the integrated ACM of the vaccination period of the covid period (50
weeks), w50c-1 the integrated ACM of the pre-vaccination period of the covid period (50
weeks) and w50c-2 the integrated ACM of the first pre-covid period of 50 weeks

(immediately preceding the covid period).

Table 4 contains the calculated vaccination-period excess mortality (Vax-pCVD) and
pre-vaccination-period excess mortality (pVax-pCVD) of the covid period, for each age
group for the USA, and for the entire USA (“Total”), and the relative changes also, using
each equation described above (Equations 9 and 10), as percentages of the pre-covid-

period reference values (w50c-2).

Age Group w50c w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
0-24 6133 58 285 53 751 4534 7585 8,44 % 14,11 %
25-44 199 698 176 183 136 281 39902 63 417 29,28 % 46,53 %
45-64 668 308 636 579 515280 121299 153028 23,54 % 29,70 %
65-74 692 322 684 913 537 036 147 877 155 286 27,54 % 28,92 %
75-84 791 625 830 068 662 236 167 832 129389 25,34 % 19,54 %
85+ 893194 1007 727 835 708 172019 57 486 20,58 % 6,88 %
Total 3306483 3393755 2740292 653463 566191 23,85% 20,66 %

Table 4. Estimated excess mortality of the pre-vaccination and vaccination periods of the
covid period in the USA, by age group. w50c is the total deaths during the vaccination period
of the covid period (from week-8 of 2021 to week-5 of 2022, included). w50c-1 is the total
deaths during the pre-vaccination period of the covid period (from week-11 of 2020 to week-7 of
2021, included). w50c-2 is the total deaths during the pre-covid period (from week-13 of 2019 to
week-10 of 2020, included). pVax-pCVD and Vax-pCVD correspond to the excess mortality in
the pre-vaccination period of the covid period and to the excess mortality in the vaccination
period of the covid period, respectively. pVax-pCVD/pCVD and Vax-pCVD/pCVD correspond to
the relative changes, as percentages of the pre-covid-period mortality, calculated from Equation
9 and Equation 10, respectively. ACM data were retrieved from CDC (CDC, 2022b), as
described in Table 1.

Equivalents to Table 4 for each of the states of the USA can be found in Appendix A.
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The numbers in Table 4 are represented graphically in bar charts, below, and are

discussed below.
Figure 15 shows those quantities together with the relative excess mortality change in

the covid period (xDc(100)1%, Equation 7) for each of the age groups for the whole
USA.

xDc(100)1%, pVax-pCVD/pCVD and Vax-pCVD/pCVD, USA, by age group
®xDc(100)1% @ pVax-pCVD/pCVD ®Vax-pCVD/pCVD
50%

40%
30%
20%
10%

0%

45-64 65-74
Age Group

Figure 15. Excess mortality of the covid period (xDc(100)1%) (light-blue), of the pre-
vaccination period of the covid period (pVax-pCVD/pCVD) (dark blue) and of the
vaccination period of the covid period (Vax-pCVD/pCVD) (orange) in the USA, as
percentages of the pre-covid-period mortality, by age group. The constant dashed line
represents the value of xDc(100)1% for the whole USA. ACM data were retrieved from CDC
(CDC, 2022b), as described in Table 1. xDc(100)1%, pVax-pCVD/pCVD and Vax-pCVD/pCVD
are calculated from Equation 7, Equation 9 and Equation 10, respectively.

The excess mortality in the pre-vaccination period of the covid period is relatively lower
than the excess mortality in the vaccination period of the covid period and lower than
the excess mortality of the covid period for the younger age groups (0-24, 25-44, 45-64,
65-74) (Figure 15). The opposite is true for the older ages (75-84, 85+ years) (Figure
15). This qualitative difference can be interpreted as possibly associated to the
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vaccination program, along the lines discussed above (Figure 10; Figure 11), in relation
to the late-summer-2021 peak and the synchronous modest stepwise increase in
cumulative vaccine dose delivery (administered). However, it is also possible that the
said qualitative difference results instead (or concomitantly) as being due to the impacts
of cumulative socio-economic pressures. Younger adults will have more resilience than
older adults, such that the deadly toll of life-changing circumstances will take longer to

materialize.

Next, we look at the excess mortality in the pre-vaccination period of the covid period
and in the vaccination period of the covid period at the state level.

3.3.4. Excess mortality of the pre-vaccination and vaccination periods of the covid
period, by state

Figure 16 shows USA maps of the covid-period pre-vaccination-period relative excess
mortality (pVax-pCVD/pCVD) (Panel A) and of the covid-period vaccination-period
relative excess mortality (Vax-pCVD/pCVD) (Panel B), as relative changes in

percentages of the pre-covid-period mortality by state.
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PVAX-PCVD/PCVD IN THE USA

VAX-PCVD/PCVD IN THE USA

Figure 16. Maps of the excess mortality in the pre-vaccination period of the covid period
(panel A) and in the vaccination period of the covid period (panel B) in the USA, as
percentages of the pre-covid-period mortality. Alaska and Hawaii are excluded. The darker
the color (black), the more intense is the relative change. ACM data were retrieved from CDC
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(CDC, 2022b), as described in Table 1. pVax-pCVD/pCVD and Vax-pCVD/pCVD are calculated
from Equation 9 and Equation 10, respectively.

Figure 16 shows a striking “positive-negative” effect in which many states that have
relatively large relative mortality in the first half of the covid period (Panel A) have a
relatively small relative mortality in the second half of the covid period (Panel B), and
vice versa. This suggests a long-term (2 year) “dry tinder effect” in which vulnerable
populations are decimated early or late during the 100-week covid period, but that once

decimated cannot be re-decimated.

Figure 17 shows the covid-period pre-vaccination-period excess mortality (Equation 9)

and the covid-period vaccination-period excess mortality (Equation 10) as percentages
of the pre-covid-period mortality by age group, for the whole USA (Panel A), and for the
ten most populous states (Panels B and C), ordered from the most populous to the less
populous (US Census Bureau, 2022a): California, Texas, Florida, New York,

Pennsylvania, lllinois, Ohio, Georgia, North Carolina and Michigan.

pVax-pCVD/pCVD and Vax-pCVD/pCVD, USA, by age group
@ p\ax-pCVD/pCVD @ Vax-pCVD/pCVD
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pVax-pCVD/pCVD, CA-TX-FL-NY-PA-IL-OH-GA-NC-MI, by age group
State ®California ®Texas ® Florida ® New York ®Pennsylvania ®lllinois ® Ohio ®Georgia ®North Carolina ®Michigan
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Vax-pCVD/pCVD, CA-TX-FL-NY-PA-IL-0H-GA-NC-MI, by age group
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Figure 17. Excess mortality in the pre-vaccination period of the covid period (pVax-
pCVD/pCVD) and in the vaccination period of the covid period (Vax-pCVD/pCVD) in the
USA (Panel A) and in the ten most populous states of the USA (from left to right in each
band: California, Texas, Florida, New York, Pennsylvania, lllinois, Ohio, Georgia, North
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Carolina, Michigan) for the pre-vaccination period of the covid period (Panel B) and for
the vaccination period of the covid period (Panel C), as percentages of the pre-covid-
period mortality, by age group. ACM data were retrieved from CDC (CDC, 2022hb), as
described in Table 1. pVax-pCVD/pCVD and Vax-pCVD/pCVD are calculated from Equation 9
and Equation 10, respectively.

Figure 15 and Figure 17 strikingly illustrate a large systematic change in going between
the pre-vaccination period of the covid period (first 50 weeks) and the vaccination period
of the covid period (second 50 weeks): The age structure of relative excess mortality
changes significantly, from being largely uniform with age (pre-vaccination) to being

highly weighted towards young adults (vaccination).

Regarding the evident change in age structure of the relative mortality in going from the
pre-vaccination period of the covid period into the vaccination period of the covid period
(Figure 17), the same possible interpretations apply as discussed above for Figure 15:
The said change in age structure can be interpreted as possibly associated to the
vaccination program, along the lines discussed above (Figure 10; Figure 11), in relation
to the late-summer-2021 peak and the synchronous modest stepwise increase in
cumulative vaccine dose delivery (administered). However, it is also possible that the
said change in age structure results instead (or concomitantly) as being due to the
impacts of cumulative socio-economic pressures. Younger adults will have more
resilience than older adults, such that the deadly toll of life-changing circumstances will
take longer to materialize. Both of these hypotheses (resilience in youth and vaccine
assault of vulnerable-group individuals), in turn, are consistent with the fact that the
prevalence of serious mental illness is large and highly skewed towards young adults in
the USA (NIMH, 2022).

In the next section, we explore the differential integrated mortality between the

vaccination and pre-vaccination periods of the covid period at the state level.
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3.3.5. Difference of vaccination and pre-vaccination mortality in the covid period, by age
group and by state

For a given age group and state, we calculate the difference (Vax-pVax) between
integrated mortality in the vaccination period of the covid period (w50c) and integrated

mortality in the pre-vaccination period of the covid period (w50c-1):
Vax-pVax = w50c - w50c-1 (12)

This difference (Vax-pVax) normalized by the pre-covid-period integrated mortality
(w50c-2) is:

Vax-pVax/pCVD = (w50c - w50c-1) / w50c-2, expressed as a percentage,
(12)

Table 5 contains the calculated difference in mortality between the vaccination and pre-
vaccination periods of the covid period (Vax-pVax), for each age group for the USA, and
for the entire USA (“Total”), and the relative change also, as percentages of the pre-

covid-period reference values (w50c-2).

Age Group w50c w50c-1 wb50c-2 Vax-pVax Vax-pVax/pCVD
0-24 6133 58 285 53 751 3 051 5,68 %
25-44 199 698 176 183 136 281 23 515 17,25 %
45-64 668 308 636 579 515280 31729 6,16 %
65-74 692 322 684 913 537 036 7409 1,38 %
75-84 791 625 830 068 662 236 -38 443 -5,81 %
85+ 893 194 1007 727 835708 -114533 -13,70 %
Total 3306483 3393755 2740292 -87272 -3,18 %

Table 5. Difference of vaccination and pre-vaccination mortality in the covid period in the
USA, by age group. w50c is the total deaths during the vaccination period of the covid period
(from week-8 of 2021 to week-5 of 2022, included). w50c-1 is the total deaths during the pre-
vaccination period of the covid period (from week-11 of 2020 to week-7 of 2021, included).
w50c-2 is the total deaths during the pre-covid period (from week-13 of 2019 to week-10 of
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2020, included). Vax-pVax corresponds to the difference between the vaccination-period
mortality and the pre-vaccination-period mortality, calculated from Equation 11. Vax-pVax/pCVD
corresponds to the relative change, as percentage of the pre-covid-period mortality, calculated
from Equation 12. ACM data were retrieved from CDC (CDC, 2022b), as described in Table 1.

Equivalents to Table 5Table 4 for each of the states of the USA can be found in
Appendix A.

In the covid period, vaccination-period ACM is greater than pre-vaccination-period ACM
for younger people, and smaller for older people (Table 5). In terms of deaths
predominantly caused by the vaccines, this would be opposite to the known exponential
increase with age of vaccine-associated deaths (Hickey and Rancourt, 2022).

Figure 18 shows a USA map of the state-wise difference between vaccination and pre-
vaccination mortality (Vax-pVax), as relative changes in percentage of the pre-covid-

period mortality (Vax-pVax/pCVD).

VAX-PVAX/PCVD IN THE USA

Ottawa

CALIFORNIE

Golfe du

E Nassau
Mexique O

Figure 18. Map of the difference of vaccination and pre-vaccination mortality in the covid
period in the USA, as percentages of the pre-covid-period mortality. Alaska and Hawaii are
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excluded. The darker the color (black or yellow), the more intense is the relative change
(positive or negative, respectively). ACM data were retrieved from CDC (CDC, 2022b), as
described in Table 1. Vax-pVax/pCVD is calculated from Equation 12.

Figure 18 is a geographical representation of where (by state) the differences between
the mortality per pre-covid mortality (pCVD) of the first half of the covid period (pVax;
pre-vaccination period) and the second half of the covid period (Vax; vaccination period)
are largest, both negative (pVax > Vax; darkest yellow) and positive (Vax > pVax;
darkest grey). The known initial hot spots of New Jersey and New York are bright
yellow, whereas the states with comparatively large late-covid-period mortality show up

in dark grey: Maine, Oregon, ldaho, Washington, Florida...

In our view, it is not tenable to propose that the structure represented in Figure 18
arises from the national vaccination campaign as the dominant causal factor. There is
no logical reason to propose, as the dominant excess-mortality-determining factor, that
the vaccines saved lives in the states that have the largest initial (first 50 weeks of the
covid period) mortality per capita or per pre-covid mortality and/or caused massive
mortality per capita or per pre-covid mortality in the states that had relatively small initial
covid-period mortality per capita. However, the map (Figure 18) does suggest a “dry
tinder effect” for vulnerable populations, over the course of approximately two years

under covid-period conditions, as discussed above for Figure 16.

Figure 19 shows the Vax-pVax/pCVD (Equation 12) values from Table 5 by age group,
for the whole USA (Panel A), and for the ten most populous states (Panel B), ordered
from the most populous to the less populous (US Census Bureau, 2022a): California,
Texas, Florida, New York, Pennsylvania, lllinois, Ohio, Georgia, North Carolina and
Michigan. The horizontal dashed line represents the value for the whole USA (all ages

and all states).
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Vax-pVax/pCVD, USA, by age group
20%

15%

10%

5%

0%

-5%

-10%

-15%
0-24 25-44 45-64 65-74 75-84 85+

Age Group

Vax-pVax/pCVD, CA-TX-FL-NY-PA-IL-OH-GA-NC-MI, by age group
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Figure 19. Difference of vaccination and pre-vaccination mortality in the covid period in
the USA (panel A) and in the ten most populous states of the USA (from left to right in
each band: California, Texas, Florida, New York, Pennsylvania, lllinois, Ohio, Georgia,
North Carolina, Michigan) (panel B), as percentages of the pre-covid-period mortality, by
age group. The constant dashed line represents the value for the whole USA. ACM data were
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retrieved from CDC (CDC, 2022b), as described in Table 1. Vax-pVax/pCVD is calculated from
Equation 12.

Figure 19 is another way (by difference) to illustrate the dramatic change in age
structure of relative (i.e., age-group specific) excess mortality from being largely uniform
with age (pre-vaccination) to being highly weighted towards young adults (vaccination),
which is shown in Figure 17.

Figure 19 shows that more young adults died (relative to their population or to their pre-
covid death rate) in the second half (Vax) of the covid period relative to the first half
(pVax) of the covid period, for most states and for the whole USA. This is consistent
with a long-term (2-year) “dry tinder effect” for elderly populations, and greater resilience
against the assault of the covid-period conditions for younger populations, such as to
take longer for mortality to be experienced in younger residents. It is also consistent
with the hypothesis that immunocompromised young adults were captured by the
vaccination campaign, including the so-called “vaccine equity” programs, which would
also explain the large late-summer-2021 ACM peak for young adults discussed above.
Both of these hypotheses, in turn, are consistent with the fact that the prevalence of
serious mental iliness is large and highly skewed towards young adults in the USA
(NIMH, 2022).

Therefore, from all of the above, it does not appear that the USA vaccination campaign
has had a dominant impact, positive or negative, on integrated all-cause mortality,
although it may have participated or predominantly caused the change in age structure
of mortality risk, and may have contributed to maintaining a large covid-period ACM.
The changes in mortality per pre-covid mortality, which occur between the first (pVax)
and second (Vax) halves of the covid period may be due to temporal changes in both
guantity (“dry tinder effect”) and quality (age, resilience) of the vulnerable populations
during a sustained covid-period assault on living conditions, and may have been
significantly modulated by vaccine-campaign capture of immunocompromised young

adults from vulnerable groups. In order to explore these hypotheses, regarding



288

73

vulnerable groups, we next quantify excess mortality per capita for the entire 100-week
covid period and examine its correlations with various socio-economic factors, in the

following section.

3.4. Associations of excess mortality of the covid period with socio-geo-
economic variables

In our previous article (Rancourt, Baudin and Mercier, 2021b), we described
associations of integrated excess (with respect to an extrapolated summer baseline
mortality) all-cause mortality per capita in anomalous features (cvpl, smpl, cvp2, smp2)
of all-cause mortality by time in the covid period with socio-geo-economic and climatic

parameters:

“[...] we have shown is that, in the COVID-era, during summer-2020 (smp1l),
fall-winter-2020-2021 (cvp2) and summer-2021 (smp2), combined factors
including poverty, obesity and hot climate became deadly associations for
excess (above-SB) deaths, beyond the deaths that would have occurred from

the pre-COVID-era background of preexisting risk factors.”
Therefore, here again we examine associations with such factors.

The following factors normalized by state population are tested against the quantified
excess mortality of the covid period (xDc(100)1) normalized by the state population:

e Poverty

¢ Median Household Income (MHI)

e Obesity

e Population aged 65 and over (and 75+, and 85+)

e Supplemental Security Income (SSI)

e Social Security Disability Insurance (SSDI)

e Disability
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Figure 20 shows the scatter plot for poverty (on two different scales, A and B), defined
as the estimated percentage of the population of people of all ages living in poverty (US
Census Bureau, 2022b). The Y-axis is the fraction xDc(100)1/pop, the 100-week covid-

period excess mortality by population, which is the “100-week covid-period fatality ratio”

for the USA population.
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Figure 20. Excess mortality of the covid period normalized by population versus poverty
in the USA. The axes are optimized for the dataset (Panel A) and for the intercept between
trend line and X-axis (Panel B). Each point is for one state of the USA. The parameters of the
least squares fitted linear trend line are given in Table 6. The color-code of the 51 states is
shown in section 2. Data were retrieved as described in Table 1. xDc(100)1 is calculated from
Equation 5.

Figure 20 is a striking result. Such a result is rarely so clear in epidemiological studies.
The Pearson correlation coefficient is r = +0.86 (Table 6). Beyond this “very strong”
correlation, we note that the least squares fitted straight line passes virtually through the
origin (Table 6), implying that the integrated excess mortality per capita per state for the
whole 100-week covid period (i.e., what we have termed the “100-week covid-period
fatality ratio” for the USA population) is directly proportional to poverty of the state, not
merely very strongly correlated to poverty. Such proportionality suggests a fundamental
relationship, which is causal in nature; in which poverty captures or is an accurate proxy
for the dominant factor or factors that determine mortality arising from all the conditions

occuring during the covid period.

The said proportionality (Figure 20) means that a state with zero poverty would have
experienced zero excess mortality in the 100-week covid period, and that doubling
state-wise poverty (the fraction of state residents living in poverty) doubles excess

mortality in the 100-week covid period, for example.

Furthermore, we note that it is unlikely that this strong epidemiological relationship with
poverty arises from a viral respiratory disease. The classic development of a viral
respiratory disease, leading to death, is one in which the infection fatality ratio is
approximately exponential with age, with the main co-factors being comorbidity, not
economic hardship itself, irrespective of age. There is no known viral respiratory
disease in which the pathogen targets poverty, while being insensitive to age (see

scatter plot versus age of the state population, Figure 23 below).

Figure 21 shows the scatter plot for median household income (MHI) (on two different

scales, A and B), defined as the estimated median household income in US dollars (US
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Census Bureau, 2022b). The Y-axis is the fraction xDc(100)1/pop, the 100-week covid-
period excess mortality by population, which is the “100-week covid-period fatality ratio”

for the USA population.
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Figure 21. Excess mortality of the covid period normalized by population versus median
household income (MHI) in the USA. The axes are optimized for the dataset (Panel A) and for
the intercept between trend line and X-axis (Panel B). Each point is for one state of the USA.
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The parameters of the least squares fitted linear trend line are given in Table 6. The color-code
of the 51 states is shown in section 2. Data were retrieved as described in Table 1. xDc(100)1 is

calculated from Equation 5.

Here, the Pearson correlation coefficient is r = -0.71 (“strong”) (Table 6). The graph
(Figure 21) suggests that a USA state with a MHI of approximately $130K or more
would have zero excess mortality integrated over the 100-week covid period. Likewise,
the states with smallest MHI attain a “100-week covid-period fatality ratio” of
approximately 0.005, or 0.5%, which is very large, since this is over and above non-

covid-induced mortality for such states.

Income (Figure 21) and poverty (Figure 20) are clearly determinative factors predicting
excess 100-week covid-period mortality in a state of the USA, occuring since a

pandemic was announced on 11 March 2020 by the WHO.

Figure 22 shows the scatter plot for obesity, defined as the prevalence of self-reported
obesity among U.S. adults (CDC, 2021). The Y-axis is the fraction xDc(100)1/pop, the
100-week covid-period excess mortality by population, which is the “100-week covid-

period fatality ratio” for the USA population.
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Figure 22. Excess mortality of the covid period normalized by population versus obesity
in the USA. Each point is for one state of the USA. The parameters of the least squares fitted
linear trend line are given in Table 6. The color-code of the 51 states is shown in section 2. Data
were retrieved as described in Table 1. xDc(100)1 is calculated from Equation 5.

Here the positive correlation is “strong”, although less than for MHI, at r = +0.62 (Table
6). The least squares fitted straight line suggests that a USA state that would have an
obesity rate of approximately 7% or less would have zero excess 100-week covid-
period mortality. This implies that certain groups of obese residents do not contribute to
100-week covid-period excess mortality, presumably wealthy obese residents, for

example.

Figure 23 shows the scatter plot for the proportion of the population aged 65 years old
and over. The Y-axis is the fraction xDc(100)1/pop, the 100-week covid-period excess

mortality by population, which is the “100-week covid-period fatality ratio” for the USA

population.
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Figure 23. Excess mortality of the covid period normalized by population versus the
proportion of people aged 65 and over in the USA. Each point is for one state of the USA.
The color-code of the 51 states is shown in section 2. Data were retrieved as described in Table
1. xDc(100)1 is calculated from Equation 5.
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There is no significant correlation (r = +0.046, “very weak”, Table 6). This is also true for
the proportion of the population aged 75 years old and over (75+/pop) and for the
proportion of the population aged 85 years old and over (85+/pop) (data not shown).
Excess all-cause mortality of the 100-week covid period in the USA has no relation to
old age, on a state-wise basis.

This lack of correlation with age again shows that the excess mortality is not consistent
with having been caused by a viral respiratory disease, including COVID-19, since the
known infection fatality ratios are exponential with age (Elo et al., 2022; Sorensen et al.,
2022).

Other factors — which we did not consider in our previous article (Rancourt, Baudin and
Mercier, 2021b) — are Supplemental Security Income (SSI) and Social Security
Disability Insurance (SSDI). Those factors are state-provided benefits in case of
disability or blindness (SSA, 2020). They can be interpreted as indicators or proxies for
the proportion of frail populations in the USA. Whitaker (Whitaker, 2015) has interpreted
that the majority of SSI and SSDI recipients can be classified as mentally disabled and
receiving prescription psychiatric medication. He reports that some of these drugs are
definitely associated with obesity. See also a current report about the prevalence of
mental illness in the USA (NIMH, 2022).

Figure 24 shows the proportion of people receiving SSI versus the proportion of people

receiving SSDI by state.
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Figure 24. SSl recipients normalized by population versus SSDI recipients normalized by
population in the USA. Each point is for one state of the USA. The color-code of the 51 states
is shown in section 2. Data were retrieved as described in Table 1.

Although SSI and SSDI are independent programs, they are positively correlated to
each other, showing that states that have more of one type of recipients also have more
of the other type of recipients. Also, the two programs are not mutually exclusive, as
some people called “concurrent” are eligible for both (SSA, 2020), and there is an

approximately 10% overlap (data not shown).

Figure 25 shows the scatter plot for SSI recipients by population (SSA, 2022a). The
Y-axis is the fraction xDc(100)1/pop, the 100-week covid-period excess mortality by

population, which is the “100-week covid-period fatality ratio” for the USA population.
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Figure 25. Excess mortality of the covid period normalized by population versus SSI
recipients normalized by population in the USA. Each point is for one state of the USA. The
parameters of the least squares fitted linear trend line are given in Table 6. The color-code of
the 51 states is shown in section 2. Data were retrieved as described in Table 1. xDc(100)1 is

calculated from Equation 5.

Here, the Pearson correlation coefficient is r = +0.51 (“moderate”) (Table 6). The graph
(Figure 25) suggests that a USA state with a SSl/pop of zero would nonetheless have a
“100-week covid-period fatality ratio” of approximately 0.2%. This implies that the SSI
population cannot account for all the excess mortality in the 100-week covid period:

Other groups must also contribute to the said excess mortality.

Figure 26 shows the scatter plot for SSDI recipients by population, defined as the
number of all disabled SSDI beneficiaries aged 18-64 (SSA, 2022b). The Y-axis is the
fraction xDc(100)1/pop, the 100-week covid-period excess mortality by population,
which is the “100-week covid-period fatality ratio” for the USA population.
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Figure 26. Excess mortality of the covid period normalized by population versus SSDI
recipients normalized by population in the USA. Each point is for one state of the USA. The
parameters of the least squares fitted linear trend line are given in Table 6. The color-code of
the 51 states is shown in section 2. Data were retrieved as described in Table 1. xDc(100)1 is

calculated from Equation 5.

Here, the Pearson correlation coefficient is r = +0.47 (“moderate”) (Table 6). The graph
(Figure 26) suggests that a USA state with a SSDI/pop of zero would nonetheless have
a “100-week covid-period fatality ratio” of approximately 0.2%. Like with the population
of SSI recipients (Figure 25), this implies that the SSDI population cannot account for all
the excess mortality in the 100-week covid period. Other groups must also contribute to

the said excess mortality.

Figure 27 shows the scatter plot for disability, defined as the percentage of Americans
living with a disability (Disabled World, 2020). Disability is defined as a long-lasting
sensory, physical, mental, or emotional condition or conditions that make it difficult for a
person to do functional or participatory activities such as seeing, hearing, walking,
climbing stairs, learning, remembering, concentrating, dressing, bathing, going outside
the home, or working at a job. The Y-axis is the fraction xDc(100)1/pop, the 100-week
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covid-period excess mortality by population, which is the “100-week covid-period fatality

ratio” for the USA population.
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Figure 27. Excess mortality of the covid period normalized by population versus
disability in the USA. Each point is for one state of the USA. The 8 apparent bottom outliers
are: Hawaii, Massachusetts, New Hampshire, Washington, Rhode Island, Vermont, Oregon,
and Maine. The color-code of the 51 states is shown in section 2. The parameters of the least
squares fitted linear trend line are given in Table 6. Data were retrieved as described in Table 1.

xDc(100)1 is calculated from Equation 5.

Here, the Pearson correlation coefficient is r = +0.59 (“moderate”) (Table 6). The graph
(Figure 27) suggests that a USA state with no one living with a disability would have a

near-zero “100-week covid-period fatality ratio” (estimated at 0.01%). This is similar to

the situation with poverty (Figure 20), in that if there were no disabled persons in the

USA, the excess ACM of the covid period would have been essentially zero.

Table 6 gives parameters of the correlations discussed above.
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Factor (units) | Slope (units) Intercept Pearson Strength
coefficient (r) | (Evans, 1996)

Poverty (%) +0.0331 (per %) | -0.00008 +0.855 Very strong
MHI ($) -6E-08 (per $) +0.008 -0.706 Strong
Obesity (%) +0.0152 (per %) | -0.0011 +0.618 Strong

Negligible to
65+/pop (%) +0.0023 (per %) | +0.0034 +0.046

very weak
SSl/pop (%) +0.069 (per %) +0.0022 +0.512 Moderate
SSDI/pop (%) +0.0546 (per %) | +0.0022 +0.466 Moderate
Disability (%) +0.028 (per %) +0.0001 +0.590 Moderate

Table 6. Parameters of the least squares fitted straight lines for xDc(100)1/pop (Y-axis)
versus Factor (X-axis), where xDc(100)1/pop is dimensionless. Here: xDc(100)1/pop =
Slope x Factor + Intercept.

In this article, we did not apply a strict separation between sections, which would

exclude any discussion of results in the Results section, in order to facilitate

appreciation for the often novel features of the data being presented.

In the next section, we continue, organize and supplement our discussion of the above

results.
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4. Discussion

4.1. All-cause mortality in the covid period in the USA: Sudden onset and
heterogeneity by state

The covid period in the USA discontinuously starts immediately after the WHO’s

11 March 2020 declaration of a pandemic, and is a period exhibiting extraordinarily
large and time-wise (by week, by month, by season) anomalous ACM, compared to the
historic record since at least 1999 (Figure 1). The sudden discontinuity is synchronous
everywhere that it occurs, and its occurrence (presence and magnitude) is highly
heterogeneous across state, provincial, regional and national jurisdictions, in North
America and Europe, where the best ACM by time data is available (Rancourt, 2020;
Rancourt, Baudin and Mercier, 2020, 2021a, 2021b; Johnson and Rancourt, 2022).

Such a large discontinuity, into a qualitatively different long-term (2-year) regime of
ACM behaviour, has previously not been observed in epidemiology, so clearly. The
break occurs between two regimes of ACM, between two distinct types of mortality
behaviours by time, by age group and in terms of heterogeneity by jurisdiction, and it
occurs at or near the date (11 March 2020) of the WHQO’s declaration of a pandemic;
which is the date at which hospital, care-home and public health protocols were
discontinuously, somewhat permanently and broadly changed, while lockdowns
(jurisdiction-wide shelter-in-place or stay-at-home orders) were often and
heterogeneously (by state) applied soon after this same date (Johnson and Rancourt,
2022), accompanied by massive restructuring of local economic activity.

Rancourt (Rancourt, 2020) seems to have been the first to point out this discontinuity in
ACM by time and to have associated it to the measures installed on or near 11 March
2020, rather than to a pandemic spread of a contagious disease. We have discussed
this break in detail previously, following Rancourt, and further associated it with the
imposed structural changes in the society and the economy (Rancourt, Baudin and
Mercier, 2020, 2021a, 2021b).
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The heterogeneity by jurisdiction of the ACM by time behaviour following the said
discontinuity is a striking phenomenon compared to remarkably uniform behaviour of
ACM by time across jurisdictions, indeed across continents (at mid-latitudes), in pre-
covid time (before 11 March 2020) (Rancourt, Baudin and Mercier, 2020). One has to
go back to 1918 to observe a possibly similar phenomenon, at a time when less data
was available (Rancourt, Baudin and Mercier, 2021b). In the USA, there are particularly
large state-to-state differences in ACM by time behaviour during the covid period,
compared to very similar state-to-state behaviour in pre-covid time (Rancourt, Baudin
and Mercier, 2021b). For example, Johnson and Rancourt (Johnson and Rancourt,
2022) find covid-period health-status-adjusted integrated ACM per capita to vary by
approximately 20% from state to state for the covid period, while a state-to-state
variation of only approximately 2% occurs for corresponding integration windows prior to
11 March 2020 (their Figure 7).

The USA state-wise heterogeneity in ACM behaviour is a further demonstration of the
abrupt change in ACM regime that occurred on or near 11 March 2020. Given the
complexities of the comparative behaviours between states, there is no substitute for
showing the all-ages data for each of the states. This is done for the ACM/w data in
Appendix A.

We previously showed that in the USA the ACM by time and by state jurisdiction in the
covid period is contrary to the expected behaviour for a viral respiratory disease
pandemic, and that the extra deaths, when and where they occur in the USA, were
likely due to the government and medical responses, including constructive denial of
treatment of an unprecedented bacterial pneumonia epidemic that predominantly
affected poor and obese individuals living in hot-climate states (Rancourt, Baudin and
Mercier, 2021b).

More specifically, we proposed the following interpretive scheme:
e The covid response and measures created stressful socio-economic, regulatory

and institutional conditions. For example, studies report increased unemployment
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and worsening mental health (Czeisler et al., 2020; Jewell et al., 2020; Giuntella
et al., 2021). This would result in chronic psychological stress in many
individuals, during the covid period.

As we have discussed and reviewed previously (Rancourt, Baudin and Mercier,
2021a), chronic stress debilitates the immune system and is arguably the
dominant determinant of individual health (Cohen, Tyrrell and Smith, 1991; Ader
and Cohen, 1993; Cohen et al., 1997; Sapolsky, 2005; Cohen, Janicki-Deverts
and Miller, 2007; Dhabhar, 2014; Prenderville et al., 2015). Furthermore, the
molecular and physiological mechanisms for suppression of the immune system
by experienced chronic stress are being elucidated more and more (Devi et al.,
2021; udit, Blake and Chiu, 2022).

In terms of assigning actual cause of death for covid-period excess mortality in
the USA, we argued that bacterial pneumonia was a likely candidate, attacking
vulnerable groups subjected to debilitating stress, during a massive pneumonia
epidemic evident in the CDC data, combined with a dramatic drop in antibiotic
prescriptions (Rancourt, Baudin and Mercier, 2021b). The said pneumonia
epidemic is also seen, directly or indirectly, in other studies (Di Gennaro et al.,
2021; Bradley et al., 2022).

Further studies have since established a sustained drop in antibiotic prescriptions
(e.g., (Buehrle et al., 2021; King et al., 2021, Kitano et al., 2021; Van Laethem et
al., 2021, 2022; Gisselsson-Solen and Hermansson, 2022; Givon-Lavi et al.,
2022; Gottesman et al., 2022; Knight et al., 2022; Winglee et al., 2022).

Those conclusions are supported by the present study, which has the added benefits of:

month-wise time-resolved ACM by age group and by sex back to 1999;

more recent consolidated week-wise time-resolved ACM, up to and including
week-5 of 2022;

closer examination by age group; and

cumulative vaccine dose delivery data time-resolved by week, by injection series

or status, by age group and by state.
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In particular, the correlations between xDc(100)1/pop (the 100-week covid-period
excess mortality by population, which is the “100-week covid-period fatality ratio” for the
USA population) and poverty (Figure 20), median household income (MHI, Figure 21),
obesity (Figure 22), SSl/pop (SSI recipients per population) (Figure 25), SSDI/pop
(SSDiI recipients per population) (Figure 26), disability (Figure 27), and the absence of
significant correlations with population fractions of elderly residents (Figure 23, and
above discussion) (Table 6), provide compelling support for the said conclusions. For
example, the absence of significant correlations with population fractions of elderly
residents (65+, 75+, or 85+ years) is incompatible with the reported exponential age-
dependence of the COVID-19 infection fatality ratio (Elo et al., 2022; Sorensen et al.,
2022), and contrary to all the studies finding that the dominant factors are age and age-
associated comorbidities for viral respiratory diseases, including COVID-19. Whereas,
no known respiratory-disease virus specifically targets residents living in poverty (Figure
20), irrespective of age (Figure 23).

4.2. Late-summer-2021 anomalous mortality of young adults

The time-structure of the all-cause mortality by month (ACM/m) from 2000, into the
covid period, by age group is shown in Figure 4. Here, the relative magnitude of the
covid-period excess mortality above the historic trend is particularly large for the age
groups 25-34y (Figure 4C), 35-44y (Figure 4D), and 45-54y (Figure 4E).

See also Figure 7, Figure 9, Figure 10, Figure 11, Figure 13, Figure 15, Figure 17 and
Figure 19. Basically, we observe the same age-group-differential and seasonal-
differential ACM by time phenomena with higher time resolution and in more detail in

the all-cause mortality by week (ACM/w).

Similarly with the ACM/m (Figure 4) data, and as is evident from Table 3, the ACM/w
(Figure 7) data also shows that the relative magnitude of the covid-period extra deaths
above the historic trend is particularly large for the age group 25-44y (Figure 7B), and to
a lesser degree 45-64y (Figure 7C), especially the late-summer-2021 feature (smp2).
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These covid-period young-adult age group large excesses in ACM by time, especially in
the late-summer-2021 (smp2) feature, are a central feature of mortality during the covid
period in the USA.

The age-group-dependent relative magnitude of the covid-period excess mortality is
contrary to the age dependence of mortality for viral respiratory diseases, including that
reported for COVID-19, in which mortality strongly increases exponentially or near-

exponentially with age (Elo et al., 2022; Sorensen et al., 2022).

These results are contrary to, incompatible with, and irreconcilable with an interpretation
in which excess mortality (by age-group) in the covid period in the USA is mostly or
predominantly caused by COVID-19; or any known viral respiratory disease (see
Rancourt et al.’s discussion about the 1918 declared pandemic (Rancourt, Baudin and
Mercier, 2021b), and references therein). Either one must admit that the declared
COVID-19 pandemic is not the main cause of death to explain the excess mortality
data, or ignore the well-established data showing that COVID-19-assigned mortality
increases exponentially or near-exponentially with age, and that young people
essentially (comparatively) do not die from COVID-19, as the primary assigned cause of

death in a controlled clinical and laboratory verified setting.

Furthermore, relative mortality is particularly large for the late-summer-2021 feature
(smp2) in the 35-44y age group (Figure 4D), compared to any other time in the covid
period, and more so than with any other age group. This feature (large smp2 in the 35-
44y age group), however, is highly variable from state to state, being prominent or very
prominent in states such as Texas, Florida, Georgia, North Carolina, South Carolina,
Alabama, Arkansas, Hawaii, Idaho, Kentucky, Louisiana, Mississippi, Missouri, Nevada,
Oklahoma, Oregon, Tennessee, Washington, Virginia, West Virginia and Wyoming,
while being absent in New York and New Jersey, intermediate in California, and mostly
intermediate or absent in other states, while Michigan uniquely has a spring-2021 peak
in mortality for that age group centered in April (Figure 11). The latter observations are

confirmed in the ACM/w data for 25-64y age group (not shown). Generally, the 2020
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and 2021 summers were most deadly in the Southern states, as previously described
(Rancourt, Baudin and Mercier, 2021b). Such state-to-state heterogeneity is
inconsistent with the pandemic paradigm of rapid spread, extensive coverage and
complete immune susceptibility. It is more understandable in terms of the driving forces

described above.

Coming back to age-groups: Why would this be? Why would mortality in this young-
adult age group suddenly spike in late-summer-2021, in many states and as seen on
the basis of the whole USA, to an unprecedented large value, after 18 months of the
declared pandemic, compared to anything in the earlier covid period or the last 20
years, approximately doubling all-cause mortality for several months for 35-44 year olds
(Figure 4D), both male and female (not shown)? See also Figure 7, Figure 9, Figure 10,

Figure 11, Figure 13, Figure 15, Figure 17 and Figure 19.

In attempting to answer this question (Why are young adults dying more than ever in the
second half of the covid period, and in the late-summer-2021 ACM peak in particular?),
we submit that the answer is probably not “variants of concern”, or any such theoretical
proposal from immunology. Instead, we describe two preferred hypotheses to explain
the observation:

i. The first is that young adults are more resilient than old adults against the
cumulative impact of persistent covid-period conditions that cause chronic
psychological stress that, in vulnerable groups, causes emergent or
worsening immunodeficiency that enables death by bacterial pneumonia. In
support of this hypothesis, one of the largest vulnerable groups in the USA —
those afflicted by serious mental iliness (5.6% adults = 14.2 million aged 18+,
in 2020) — has a heavily skewed prevalence towards young adults (see
below).

il. The second is that the vaccination campaign, including the “vaccine equity”
campaigns, captured many thus made immunocompromised young adults
from vulnerable groups and that the vaccine challenge against many of these

individuals constituted a significant comorbidity, which was absent in the first
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(pre-vaccination) half of the covid period, thus increasing the death toll of
young adults, overall, in the second (vaccination) half of the covid period.

Note that the second hypothesis (vaccine toxicity) relies on the conditions described in
the first hypothesis (cumulative stress-induced immunodeficiency). This is because the
vaccine toxicity for subjects who are not immunocompromised (fatality risk per dose,
inferred from VAERS data) is too small to quantitatively explain the observed ACM
increases that are synchronous with increases in vaccine-delivery (administered doses),

assuming avoidance of immunocompromised subjects (see above, and below).

As mentioned above, we do not believe that any “variant of concern” (CDC, 2022¢)
emerging in 2021 could produce such a result in the mortality data, or that the
explanation is viral. Rather, we prefer to propose that the same forces that appear to
generally determine the exceptionally large excess mortality in the covid period in the
USA — namely the impact on the immune systems of individuals in populations of those
most vulnerable to psychological stress and social isolation during life-changing covid-
period circumstances, combined with an essentially untreated mass bacterial-
pneumonia epidemic (Rancourt, Baudin and Mercier, 2021b) — also largely determined
the jurisdictional, age and time structures of excess mortality in the covid period, on the
background of the demographics of highly vulnerable groups. Here, the hypothesis is
that, while the “conditions = stress = immune-vulnerability = death from pneumonia”
scenario existed from the very start of the covid period (Rancourt, Baudin and Mercier,
2021b), the prolonged conditions and associated chronic stress eventually has more
relative impact on young adults that are more resilient at first, thus changing the age

structure of mortality as the covid period advances.

We expect, therefore, that the change in age structure of mortality during the course of
the covid period (Figure 15, Figure 17) is driven by such factors as a “dry tinder effect”
among the elderly and differential youth resilience to chronic stressors (relative
endurance over long periods), on the background of the demographics of highly

vulnerable groups, rather than driven by the vaccination campaign via general-
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population vaccine toxicity (fatality risk per dose for non-immunocompromised subjects)

acting alone and irrespective of these circumstances.

There is also a cumulative effect on young adults, which is irreversible to some extent
(Giuntella et al., 2021). Our interpretation of Figure 15 is consistent with the fact that the
hardships (expenses, housing and food insecurity) are sustained in the USA during the
covid period (CBPP, 2022). In the words of the OECD (OECD, 2022):

“The COVID-19 pandemic has triggered one of the worst jobs crises since the
Great Depression. There is a real danger that the crisis will increase poverty

and widen inequalities, with the impact felt for years to come.”

Also, socio-economic factors may have caused young adults to have higher
experienced stress in the second half of the covid period, compared to older adults. For
example, pressures inducing bankruptcies and associated losses of livelihood and
personal identity would increase as the restrictive conditions persist in many sectors,

although analysis of the macroeconomic data is complex (Martos-Vila and Shi, 2022).

It is also possible that the age-structure change phenomenon partly results from or is
significantly contributed to by vaccine-campaign (including so-called “vaccine equity”
campaigns) capture of vulnerable young adults made immunocompromised by the said

chronic psychological stress.

Both of the latter hypotheses (relative resilience to stress of young adults in vulnerable
groups and vaccine capture of young adults made immunocompromised by chronic
stress) advanced to explain the increased skewness of mortality towards young adults
in the vaccination period (second half) of the covid period are consistent with the fact
that the prevalence of serious mental illness is large and highly skewed towards young
adults in the USA (NIMH, 2022). Indeed, the age distribution in covid-period fatality risk
that we observe, which is skewed towards young adults in the vaccination period of the
covid period (Figure 17), should be put in the context of the prevalence of serious

mental illness, which was 14.2 million adults aged 18 or older in the USA in 2020,
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representing 5.6% of all USA adults, and which is highly skewed towards young adults
(NIMH, 2022):

Past Year Prevalence of Serious Mental lliness Among U.S.
Adults (2020)

Data Courtesy of SAMHSA
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Figure 28. Prevalence of serious mental illness among U.S. adults in 2020. Data are shown
for the entire USA (Overall), by sex (Female, Male), by age (18-25, 26-49, 50+) and by
race/ethnicity (Hispanic, White, Black or African American, Asian, Native Hawaiian/Other Pacific
Islander, American Indian/Alaskan Native, Two or more races). Serious mental illness is defined
as a mental, behavioral, or emotional disorder resulting in serious functional impairment, which
substantially interferes with or limits one or more major life activities. This figure is from NIMH
(NIMH, 2022).

Basically, any model of excess mortality, which relies on the mentally disabled as a
source group and serious mental illness as a major cofactor, will be biased towards
mortality risk that is skewed towards young adults. It is well established that in the USA
younger people are disproportionately affected by diagnosed mental disorders
(Merikangas et al., 2010).

We advance that the tragic excess deaths of 35-44 year olds (and 25-64 year olds) in

late-summer-2021 in the USA, extraordinarily exhibited as an actual peak (smp2) in
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ACM by time, for example, needs to be explained by specific health-status and socio-
psycho-economic circumstances in the different jurisdictions, and not solely in terms of
theoretical proposals from virology and immunology (e.g., “variants of concern”, etc.).
The needed actual community-level field work is not being sufficiently funded or

undertaken, to our knowledge.

4.3. Vaccination campaign

The time-resolved and age-group resolved vaccination campaign, together with the
similarly resolved ACM/w show that the vaccination campaign did not reduce mortality
during the covid period (Figure 10; Figure 11; Figure 12; Figure 13; Figure 14; Figure
16; Figure 17; Table 4; Table 5).

We conclude with a high degree of certainty that the COVID-19 vaccination campaign in
the USA was ineffective in reducing all-cause mortality. The mass vaccination campaign
was not justified in terms of reducing excess all-cause mortality. The large excess

mortality of the covid period, far above the historic trend, was maintained irrespective of

the unprecedented vaccination campaign.

Furthermore, the vaccination campaign may have affected the age structure of ACM by
contributing to the deaths of young adults in vulnerable groups but the same dominant
forces that caused the large excess ACM in the first (50-week, pre-vaccination) half of
the covid period appear to have continued to cause the large excess ACM in the second

(50-week, vaccination) half of the covid period.

In the ACM/w data (Figure 7), similarly to the ACM/m data (Figure 4), relative mortality
is particularly large for the late-summer-2021 feature (smp2) in the 25-44y age group
(Figure 7B), compared to any other time in the covid period, and more so than with any
other age group. It is also anomalously large, to a lesser degree, for the age group
45-64y (Figure 7C).
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This feature in ACM by time during the covid period (an exceptionally large late-
summer-2021 peak, smp2) is highly variable from state to state (see above, Figure 11,
and see Appendix A), and occurs after the majority of the main-series vaccination

campaign has been mostly completed.

Nonetheless, is some or most of the exceptional mortality occurring in the late-summer-
2021 period (smp2) consistent with having been caused by the vaccination campaign?
Likewise, is any feature in ACM by time consistent with having been caused by the

vaccination campaign?

Figure 10 allows a direct comparison, on the same time axis, of all-cause mortality by
week and cumulative number of vaccinated individuals, by vaccine sequence (1st dose,
fully vaccinated, booster), for separate age groups. Figure 11 allows the same for

specific states.

A study of the Vaccine Adverse Event Reporting System (VAERS) data of the USA has
shown that the deaths associated with the COVID-19 vaccine in the USA typically occur
first in a large initial peak within 5 days or less following the injection; followed (~5 days
to ~60 days post injection) by a shoulder of exponential decay in deaths, with a fitted
half-life decay time typically in the range 13-30 days (Hickey and Rancourt, 2022; their
figures S3 through S5).

This means that deaths associated with the injections in the USA occur essentially
immediately following delivery of the injection (mostly within days, with a decaying

residual risk of fatality lasting weeks).

In addition, it is usually postulated that the alleged life-saving benefits of the vaccine
become operative 7-14 days from the time of injection, and should last several months,
similarly to the 90 days or so of efficacy claimed for flu vaccines (Rambhia and
Rambhia, 2019).
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In this way, any measurable positive or negative impact of the vaccination campaign on
death rate (all-cause mortality by week) should be temporally associated with times of
large or maximum slope in cumulative vaccine dose delivery (or vaccinated status
acquisition), if vaccine fatality toxicity is large enough (deleterious impact) or vaccine

protection against death is large enough (positive impact).

An increase in mortality from the vaccination campaign would be seen within 5 days or
so of a large slope in cumulative vaccine dose delivery, whereas a smaller mortality
would be seen to follow a large slope in cumulative vaccine dose delivery (or vaccinated
status acquisition) by a few weeks or more and should be persistent after having

attained significant vaccine dose coverage.

As discussed above in presenting Figure 10 and Figure 11, there is a modest but
significant stepwise increase in 1st-dose vaccine delivery (administration), which is
synchronous with the late-summer-2021 peak in ACM, visible for all ages and for the
25-44 and 45-64 years age groups (Figure 10A, C, D). This temporal association is
prominent in the data for many specific states (e.g., Figure 11), and cannot be

dismissed as noise.

We estimate that, in order to achieve quantitative agreement between the outcome
(late-summer-2021 peak integrated excess mortality) and factor (additional vaccine
doses over the period of occurrence of the peak), the vaccine adverse-effect fatality
toxicity per dose would need to be approximately 100 times the estimated non-
immunocompromised fatality toxicity per dose (Hickey and Rancourt, 2022; their

Table 1), assuming that only non-immunocompromised resident were injected. There
are many more doses administered than deaths. This means that if
immunocompromised residents from vulnerable groups were captured in the
vaccination doses delivered in the relevant period, then it is possible that the late-
summer-2021 mortality peak is entirely or partly due to vaccine challenge of vulnerable

young adults.
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In this regard, it is relevant that the so-called “vaccine equity” campaigns in the USA
were operating in the relevant period:

e A JAMA Editorial of 29 January 2021, entitled “Vaccine Distribution—Equity Left
Behind?” recommended, among other things “1. Prioritize vaccine distribution to
zip codes that have been most severely affected by COVID-19 and that have
high indexes of economic hardship”, and so on (Jean-Jacques and Bauchner,
2021).

e The New York Times provided extended reporting on county-wise vaccine
coverage (The New York Times, 2022).

e Large foundations such as the Rand Corporation were significantly involved
supporting “vaccine equity” programs (Faherty et al., 2022).

e Louisiana, for example, had fully launched its comprehensive “vaccine equity”
program, as did virtually all states to varying degrees (Louisiana Launches
Grassroots COVID Vaccine Campaign to Ensure No Community Gets Left
Behind | Office of Governor John Bel Edwards, 2021).

Similarly, as discussed above in introducing Figure 11, Michigan has a unique feature in
its ACM by time data, not seen for any other state. Michigan has a unique April-2021-
centered spring-2021 peak in ACM for young adults, which coincides with the large
main onset of the vaccination campaign for these ages (Figure 11G, H). In this case, in
order to achieve quantitative agreement between the outcome (spring-2021 peak
integrated excess mortality) and factor (additional vaccine doses over the period of
occurrence of the peak), the vaccine adverse-effect fatality toxicity per dose would need
to be approximately 10 times the estimated non-immunocompromised fatality toxicity
per dose (Hickey and Rancourt, 2022; their Table 1), assuming that only non-
immunocompromised resident were injected. There are many more doses administered
than deaths. This means that if immunocompromised residents of Michigan from
vulnerable groups were captured in the vaccination doses delivered in the relevant
period, then it is possible that the unique spring-2021 mortality peak for Michigan is
entirely due to vaccine challenge of vulnerable young adults. We consider this to be the

most likely hypothesis we can make, with the available information, to explain the
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unique spring-2021 mortality peak for Michigan. If the hypothesis is correct, then this
demonstrates the principle that vaccine challenge of residents made
immunocompromised by chronic stress can explain large features in ACM by time, in

the covid-period and vaccine-campaign circumstances.

4.4. Looking ahead

Unavoidable questions are: “When will the covid period end?” and “Will ACM by time

and by jurisdiction return to the pre-covid-period normal?”

We quickly looked at the latest ACM/w data for the USA, which appears to be reliable

through to April-2022, in order to give tentative answers, looking forward.

The data (shown in Appendix C) has the 2021-2022 winter peak in ACM dropping
precipitously in February-2022, down to a level, in March and April 2022, which is
typical of pre-covid-period summer baseline values. Such a low value did not occur at

any time in the USA in the covid period that we studied in the present article.

It would seem that, in terms of all-cause mortality, the covid period ended, at least
momentarily, in March and April 2022. It will be interesting to see whether there will be a

summer-2022 peak in ACM when more data becomes available.

Late reporting of mortality to the CDC could alter the above tentative observation.

5. Conclusion

Our results show the following overall large-scale features:

e All-cause mortality by time in the USA is heterogeneous by state and persistently
far in excess of the recent historic decadal trend, starting immediately when a
pandemic was declared by the WHO on 11 March 2020, and continuing



314

99

throughout the entire covid period that we examined, up to the week ending on
February 5, 2022 — with a total of 1.27M excess deaths (Figure 1, Figure 3,
Figure 5, Figure 6; Table 2, Table 3).

e Throughout the covid period, all-cause mortality is heterogeneous by state and
anomalous in its time (by week, by month) and seasonal variations, compared to
historic behaviour. The anomalies include winter and summer peaks, which are
highly variable in magnitude from year to year in the covid period, and from state
to state (Figure 8, Figure 9; Appendix A); as we observed previously (Rancourt,
Baudin and Mercier, 2021b). The broad “summer peaks” of ACM by time in 2020
and 2021 are of a nature that has not previously been observed in mortality data
for the USA or any country, historically, since quality data has been available for
more than 100 years. The anomalous heterogeneity by state in integrated
mortality over the covid period was recently demonstrated by Johnson and

Rancourt (Johnson and Rancourt, 2022; their Figure 7).

e Unlike for viral respiratory diseases, including the presumed SARS-CoV-2 virus
itself (Elo et al., 2022; Sorensen et al., 2022), the covid-period excess mortality
risk by age group is not predominantly confined to the elderly population; and the
inferred age-group-specific infection fatality ratios are not exponential or near-
exponential with age, as they would be (Table 2, Table 3, Figure 4, Figure 7,
Figure 9). On the contrary, overall for the covid period, mortality risk is broadly
distributed to all age groups and is significantly larger for younger adults
compared to the eldest adults (Figure 9). The non-exponential-with-age (more
age-uniform) distribution of mortality risk to all age groups holds for both the first
half (pre-vaccination) and second half (vaccination) of the 100-week covid period
(Figure 10, Figure 13, Figure 15, Figure 17, Table 4). The observed age-group
distribution of all-cause mortality risk constitutes proof that the covid-period
excess mortality cannot predominantly be due to the presumed SARS-CoV-2
virus or to any viral respiratory disease. The alternative would be to abandon the

accepted body of research on mortality risk by age.
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Instead of the covid-period excess all-cause mortality risk being predominantly

(or even moderately) determined by age of the population, the state-wise

integrated excess all-cause mortality for the entire 100-week covid period

normalized by state population (outcome) is correlated to socio-economic factors

that are macro-indicators of state-wise resident vulnerability (Table 6):

©)

The covid-period excess all-cause mortality risk is very strongly correlated
to poverty (r = +0.86) (Figure 20).

The said mortality risk is strongly correlated to MHI (Median Household
Income) (r =-0.71) (Figure 21).

The said mortality risk is strongly correlated to obesity (r = +0.62) (Figure
22).

The said mortality risk is not correlated simply to age of the population.
This is shown for 65+ ages in Figure 23, and is maintained for 75+ and
85+ ages (not shown).

The said mortality risk is moderately correlated to the number of SSI
(Supplemental Security Income) recipients by population (r = +0.51)
(Figure 25).

The said mortality risk is moderately correlated to the number of SSDI
(Social Security Disability Insurance) recipients by population (r = +0.47)
(Figure 26).

Whitaker (Whitaker, 2015) has interpreted that the majority of SSI and
SSDI recipients can be classified as mentally disabled and receiving
prescription psychiatric medication.

The said mortality risk is moderately correlated to disability (r = +0.59)
(Figure 27).

Despite the fact that there are significant changes in age structure of ACM by

time during the course of the covid period, the overall qualitative behaviour of

ACM by time (anomalously large excess mortality and presence of anomalous

summer and winter seasonal variations in ACM by time) and the 50-week-

integrated excess ACM are not substantially different in the first half of the
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100-week covid period (first 50 weeks of the covid period), in which there was
essentially no vaccination campaign, and in the second half of the 100-week
covid period (second 50 weeks of the covid period), in which most of the
vaccination campaign was accomplished (Figure 4, Figure 7, Figure 13, Figure
15, Figure 17, Figure 19). Therefore, the suddenly applied and massive
vaccination campaign (Figure 10) did not induce a large change of regime from
one type of ACM by time to another, on the scale of the dramatic change in

regime from pre-covid to covid period.

e Regarding mortality averted by vaccination, the COVID-19 vaccination campaign
in the USA did not cause any seasonally unambiguous temporally associated
decrease in all-cause mortality, for all ages or in any age group (Figure 10; see
also Figure 11). The vaccination campaign did not measurably cause any deaths
to be averted. This is contrary to the notion that the vaccines are “effective” in
reducing “serious illness” (and presumably death), becoming operative 7-14 days
following the time of injection, with the protection presumably lasting at least

several months.

e Therefore, although much messaging attention is directed towards life-saving
consequences arising from the mass vaccination campaign in the USA, clearly
such effects are both undetectable in all-cause mortality and necessarily small
compared to the overwhelming harm from the extraordinary covid-period

conditions themselves.

e Conversely, regarding vaccine-induced mortality, the COVID-19 vaccination
campaign in the USA did not cause the 50-week-integrated excess ACM in the
second half of the 100-week covid period (second 50 weeks of the covid period),
in which most of the vaccination campaign was accomplished, to be
systematically larger (systematically across all age groups, or all states) than in
the first half of the 100-week covid period (first 50 weeks of the covid period), in
which there was essentially no vaccination campaign. The persistent socio-

economic, regulatory, institutional... changes associated with the covid period
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(relative to pre-covid behaviour) had a large effect compared to changes
associated specifically with the period of the vaccination campaign, positive or

negative (Figure 4, Figure 7, Figure 13, Figure 15, Figure 17, Figure 19).

e Despite the fact that there is no large systematic effect of the vaccination
campaign on either 50-week-integrated mortality or main qualitative features of
ACM by time, positive or negative, we nonetheless detect significant seasonally
unambiguous local temporal associations between increases in number of
vaccinated residents and synchronous increases in all-cause mortality, for certain
age groups, and most prominently in certain states:

o The largest of these local temporal associations is seen in the data for the
whole USA and all age groups, as an accelerated increase in cumulative
number of residents having received at least one dose (or being fully
vaccinated), which is synchronous with the late-summer-2021 surge in
ACM by time (Figure 10A).

o The said local temporal association is most evident for the 25-44 years
age group (Figure 10C), also prominent for the 45-64 years age group
(Figure 10D), and discernible for the 65-74 years age group (Figure 10E).

o The said local temporal association is most prominent for the 25-64 years
age group in Southern states — which typically have the smallest
vaccination rates — including: Florida, Georgia, Louisiana, Mississippi and
Alabama (Figure 11).

o The special case of Michigan is also noteworthy (Figure 11G, H), as

discussed above.

The latter observations lead us to conclude that the large changes in age structure of
ACM by time (first half versus second half of the covid period) (esp. Figure 17) may be
partly (see Discussion section) or largely due to aggressive “vaccine equity” campaigns
that captured immunocompromised young adults in Southern states, thus causing

disproportionate mortality among vulnerable young adults in late-summer-2021.
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The entire picture of mortality during the covid period in the USA, which included
implementation of the vaccination campaign after the first 50 weeks or so, can be

modelled as:

covid-period socio-economic, regulatory, institutional... conditions

—> psychological stress [ social isolation

—> severely suppressed immune system in most vulnerable residents

(*+ vaccine assault of thus immunocompromised vulnerable residents)

—> mortality from untreated bacterial pneumonia (+ vaccine-

assault comorbidity) in most vulnerable residents

The model arises as follows.

e We infer from the temporal and jurisdictional characteristics of age-group-
resolved excess ACM that large structural changes in the living and care
conditions of residents of the USA — directly enacted by state and institutional
players (including employers) during the covid period and including secondary
consequences of the said directly enacted changes — are causally associated
with the large and sustained excess mortality in the covid period.

e We infer from correlations with socio-economic factors that severe harm and
death were induced by the said covid-period changes in particular classes of
residents, such as isolated, sick, disabled, dependent, obese, poor, seriously
mentally ill or elderly individuals; and of course residents who are co-afflicted by
such conditions.
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e We postulate that the mechanistic connection between the said covid-period
changes and high risk of all-cause death in vulnerable residents is the well-
established link between experienced psychological stress and social isolation
(factor) and suppressed immunity, ill-health and death (outcome).

e We postulate that the end-point mechanistic cause of death in the thus
immunocompromised vulnerable groups is bacterial pneumonia, in the midst of a
recorded mass epidemic of bacterial pneumonia, at a time when antibiotic
prescription rates showed an unprecedented decrease, in addition to aggressive

vaccine challenge (“vaccine equity” programs) in late-summer-2021.

The model is developed and contextualized in more detail in the Results and Discussion
sections. It provides a plausible and consistent explanation for all the aspects of the
ACM data for the USA, including the large change in age structure of the ACM on

entering the vaccination-campaign part of the covid period.

The model is predictive in that any type of comparable sudden socio-economic
upheaval, such as war or a Great Depression, in societies with large pools of vulnerable
residents, would give rise to this kind of large and rapid increase of mortality, targeting
the most vulnerable, with bacterial pneumonia playing a major role. We have previously
advanced that 1918 was such an episode in mid-latitude nations (Rancourt, Baudin and
Mercier, 2021b).

In conclusion, in terms of all-cause mortality, the covid-period socio-economic,
regulatory, institutional... conditions in the USA (from 11 March 2020 to week-5 of 2022)
were in-effect a large-scale deadly assault against vulnerable groups, which killed
approximately 1.27M members of the said groups. The temporal, jurisdictional and age-
group characteristics of the mortality are incompatible with the excess mortality having
been primarily caused by the presumed SARS-CoV-2 viral respiratory disease virus. In
the absence of poverty or if the covid-period socio-economic, regulatory, institutional...
conditions had not been imposed, there most probably would not have been excess

mortality in the USA, which was essentially the case in neighbouring Canada (Rancourt,
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Baudin and Mercier, 2021b; their Section 4). The COVID-19 vaccination campaign,
accomplished in the second half of the covid period, did not avert any deaths, and may
have been a significant contributing factor causing excess mortality in vulnerable-group

young adults during late-summer-2021.

In regard to the fundamental results of this study, we would recommend a transparent
and accountable large-scale state, county and community level independent forensic
investigation of the deaths, excluding the involvement of interested government
agencies and private corporations. The mandate should include broad systemic
considerations, in addition to specific circumstances, and the investigators should have
the necessary powers and resources consistent with the magnitude and extent of the

catastrophe, in the hope of preventing any similar public health disaster in the future.
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Appendix

The Appendix is in three parts:
e Appendix A shows for each state of the USA:
o ACM/w versus time together with ACM by 50-week period, from 2015 to
2022 (equivalent to Figure 12 without the color-coded periods)
o Excess mortality of the pre-vaccination and vaccination periods of the
covid period, by age group (equivalent to Table 4Table 5)
o Excess mortality of the covid period, by age group (equivalent to Table 3)
e Appendix B shows state-wise maps of poverty and obesity in the USA
e Appendix C shows ACM/w in the USA with most recent data, from 2015 to 2022

The states in Appendix A are ordered alphabetically.
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Appendix A — ACM/w and by 50-week period, by state, 2015-2022

ACM/w, Alabama, 2015-2022
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2016 2017 2018 2019 2020 2021 2022

State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
El Alabama | 63 285 64 837 51016 13 821 12 269 27,09 % 24,05 %
0-24 1406 1278 1257 21 149 1,67 % 11,85 %
25-44 4124 3569 2785 784 1339 28,15 % 48,08 %
45-64 14580 13643 10 908 2735 3672 25,07 % 33,66 %
65-74 14 557 14 404 11148 3 256 3409 29,21 % 30,58 %
75-84 15247 16 541 12 570 3971 2677 31,59 % 21,30 %
85+ 13371 15402 12 348 3054 1023 24,73 % 8,26 %
State w100c  w100c-1 w100c-2 xDe(100)1  xDc(100)2  xDc(100)1% xDc(100)2%
= Alabama | 128 122 101 323 100 764 26 799 27 358 26,45 % 27,15 %
0-24 2 684 2 3589 2599 285 85 11,88 % 3,27 %
25-44 7693 5501 5643 2192 2 050 39,85 % 36,33 %
45-64 28 223 21520 22 021 6703 6202 31,15 % 28,16 %
65-74 28961 21897 21240 7 064 7721 32,26 % 36,35%
75-84 31788 25293 24 520 6 495 7268 25,68 % 29,64 %
85+ 28773 24713 24 741 4 060 4032 1643 % 16,30 %
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ACM/w, Alaska, 2015-2022
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State wb50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCvD
El Alaska | 5574 4429 3824 605 1750 15,82 % 45,76 %
0-24 11 -1 -1 -100,00 % -100,00 %
25-44 553 317 174 143 379 82,18 % 217,82 %
45-64 | 1477 1201 1039 162 438 15,59 % 42,16 %
65-74| 1378 1035 922 113 456 12,26 % 49,46 %
75-84 | 1215 1047 897 144 318 16,05 % 3545 %
85+ 951 835 781 54 170 6,91 % 21,77 %
State w100c  w100c-1 w100c-2 xDc(100)1  xDc(100)2  xDc(100)1% xDc(100)2%
E Alaska | 10 003 7 459 7121 2 544 2 882 34,11 % 40,47 %
0-24 11 11 -11 =11 -100,00 %  -100,00 %
25-44 870 300 324 570 546 190,00 % 168,52 %
45-64 | 2678 2104 2 208 574 470 27,28 % 21,29 %
65-74| 2413 1820 1687 593 726 32,58 % 43,03 %
75-84 | 2256 1767 1510 489 746 27,67 % 459,40 %
85+ 1786 1457 1381 329 405 22,58 % 2933 %
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ACM/w, Arizona, 2015-2022
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State w50c  w50c-1 wb0c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD Vax-pCVD/pCVD
B Arizona | 77 054 79720 59 017 20 703 18 037 35,08 % 30,56 %
0-24 1824 1680 1487 199 343 13,44 % 23,16 %
25-44 5474 4507 3437 1464 2037 42,60 % 59,27 %
45-64 | 15096 15080 10615 4 465 4481 42,06 % 42,21 %
65-74 | 16313 16605 11 803 4802 4510 40,68 % 38,21 %
75-84 | 19514 20528 15 045 5483 4 469 36,44 % 29,70 %
85+ 18833 20926 16 636 4290 2197 25,79 % 13,21 %
State wi100c  w100c-1 wi100c-2 xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
E Arizona | 156 774 115 842 111 708 40 932 45 066 35,33 % 40,34 %
0-24 3 504 3 005 2 801 499 703 16,61 % 25,10 %
25-44 10 375 6 590 6 040 3785 4335 57,44 % 11,77 %
45-64 30176 21229 20 940 8 947 9236 42,15 % 44,11 %
65-74 32918 22977 21975 9941 10943 43,27 % 49,80 %

75-84 40042 29379 27 485 10 663 12 557 36,29 % 45,69 %
85+ 39759 32662 32 467 7097 7292 21,73 % 22,46 %
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ACM/w, Arkansas, 2015-2022
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State w50c w50c-1 wb50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Arkansas | 38 165 37 863 30 791 7072 7374 2297 % 23,95 %
0-24 821 721 667 54 154 8,10 % 23,09 %
25-44 2393 1974 1518 456 875 30,04 % 57,64 %
45-64 8490 7772 6232 1540 2258 24,71 % 36,23 %
65-74 8675 8322 b 632 1690 2043 2548 % 30,81 %
75-84 9339 9566 7871 1695 1468 21,53 % 18,65 %
85+ 8447 9508 7871 1637 576 20,80 % 7,32 %
State wi100c w100c-1 wi100c-2  xDc(100)1  xDc(100)2 xDc(100)1% xDc{100)2%
E Arkansas | 76 028 61214 60 784 14 814 15 244 24,20 % 25,08 %
0-24 1542 1239 1291 303 251 24,46 % 19,44 %
25-44 4367 3026 3021 1347 1346 44,32 % 4455 %
45-64 16262 12616 12 855 3 646 3 407 28,90 % 26,50 %
65-74 16997 15042 12 807 3 955 4190 30,33 % 32,72 %
75-84 18905 15754 15 037 3151 3 868 20,00 % 25,72 %
85+ 17955 15537 15773 2418 2182 15,56 % 13.83 %
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ACM/w, California, 2015-2022
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2016 2017 2018 2019 2020 2021 2022
State w50c w50c-1  wb0c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
B California | 304 271 335996 259 882 76 114 44 389 29,29 % 17,08 %
0-24 6141 6272 5470 802 671 14,66 % 12,27 %
25-44 19971 18694 13 342 5352 6629 40,11 % 49,69 %
45-64 59819 64752 47 587 17 165 12 232 36,07 % 25,70 %
65-74 58165 64885 47 750 17135 10415 35,88 % 21,81 %
75-84 68779 77 266 60 120 17 146 8 659 28,52 % 14,40 %
85+ 91396 104127 85613 18514 5783 21,63 % 6,75 %
State w100c w100c-1 w100c-2 xDc(100)1  xDc(100)2 xDc(100)1% xDc{100)2%
E California | 640 267 514 752 516 253 125 515 124 014 24,38% 24,02 %
0-24 12413 10837 11720 1576 693 14,54 % 591 %
25-44 38665 25834 24 117 12 831 14 548 49,67 % 60,32 %

45-64 124571 95294 96 943 29 277 27 628 30,72 % 28,50 %
65-74 123050 54336 91 863 28 714 31187 30,44 % 33,95 %
75-84 146 045 118 457 116 313 27 588 29732 23,29 % 25,56 %
85+ 195523 169 994 175 297 25529 20 226 15,02 % 11,54 %
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ACM/w, Colorado, 2015-2022
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State w50c  wbh0c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Colorado | 48 081 46 498 38 591 7 907 9490 20,49 % 24,59 %

0-24 1210 1159 1045 114 165 10,91 % 15,79 %
25-44 3775 3175 2516 659 1259 26,19 % 50,04 %
45-64 9580 8505 7 265 1240 2315 17,07 % 31,87 %
65-74 9768 9003 7362 1641 2 406 22,29 % 3268 %
75-84 11130 10 861 8 820 2 041 2310 23,14 % 26,19 %
85+ 12618 13795 11583 2212 1035 19,10 % 8,94 %
State w100c wi100c-1 wi00c-2  xDc(100)7  xDc(100)2 xDc(100)1% xDc(100)2%
El Colorado | 94 579 76 084 74 138 18 495 20 441 24,31 % 27,57 %
0-24 2 369 2064 2091 305 278 14,78 % 13,30 %
25-44 6 950 4895 4 486 2055 2 464 41,98 % 54,95 %
45-64 18085 14573 14 595 3512 3490 24,10 % 23,91 %
65-74 18 771 14 370 15 396 4 401 5375 30,63 % 40,12 %
75-84 21991 17 284 16518 4707 5473 27,23 % 33,13 %
85+ 26413 22898 23052 3515 3361 1535 % 14,58 %
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ACM/w, Connecticut, 2015-2022
1400 38K
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1000 34K %
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&
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2016 2017 2018 2019 2020 2021 2022
State w50c  w50c-1 wi0c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD Vax-pCWVD/pCVD
= Connecticut | 32992 37 514 30 041 7473 2 951 24,88 % 9,82 %
0-24 249 178 179 -1 70 -0,56 % 39,11 %
25-44 1692 1604 1369 235 323 1717 % 23,59 %
45-64 5812 6074 4825 1249 987 25,89 % 20,46 %
65-74 5781 6268 4984 1284 797 25,76 % 15,99 %
75-84 7893 8926 6913 2013 980 29,12 % 14,18 %
85+ 11565 14 464 11771 2693 -206 22,88 % -1,75 %
State w100c w100c-1 w100c-2 x¥Dc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
= Connecticut | 70 506 59 934 59 556 10572 10 950 17,64 % 18,39 %
0-24 427 360 404 67 23 18,61 % 569 %
25-44 3296 2629 2430 667 866 2537 % 35,64 %
45-64 11 886 9675 9517 2211 2 369 22,85 % 24,89 %
65-74 12 049 9768 9596 2281 2 453 23,35% 25,56 %
75-84 16819 13 833 13 254 2 986 3 565 21,59 % 26,90 %
85+ 26029 23669 24 355 2 360 1674 9,97 % 6,87 %
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ACM/w, Delaware, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Delaware | 10 568 10 665 8 497 2168 2071 25,51 % 24,37 %
25-44 468 340 344 -4 124 -1,16 % 36,05 %
45-64 2080 1927 1627 300 453 1844 % 27.84 %
65-74 2364 2271 1721 550 643 31,96 % 37,36 %
75-84 2750 2849 2173 676 577 31,11 % 26,55 %
85+ 2906 3278 2632 646 274 24,54 % 10,41 %
State w100c  w100c-1 w100c-2 xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
E Delaware | 21233 16 979 16 689 4 254 4544 25,05 % 27,23 %
0-24 23 -23 -100,00 %
25-44 808 573 342 235 466 41,01 % 136,26 %
45-64 4 007 3224 3399 783 608 24,29 % 17.89 %
65-74 4 635 3433 3485 1202 1150 35,01 % 33,00 %
75-84 5599 4 387 4211 1212 1388 27,63 % 32,96 %
85+ 6184 5362 5229 822 955 15,33 % 18,26 %
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ACM/w, District of Columbia, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD Vax-pCVD/pCVD
& District of Columbia | 6 408 6989 5367 1622 1041 30,22 % 19,40 %
0-24 11 11 24 -13 -13 -5417 % -54,17 %
25-44 538 398 187 211 351 112,83 % 187,70 %
45-64 1826 2017 1596 421 230 26,38 % 14,41 %
65-74 1549 1711 1285 426 264 3315% 20,54 %
75-84 1266 1377 1095 282 171 2575% 15,62 %
85+ 1218 1475 1180 295 38 25,00 % 3.22%
State w100c w100c-1 wi100c-2  xDc(100)1  xDc(100)2  xDc(100)1%  xDc(100)2%
E District of Columbia | 13 397 10 587 10 813 2810 2584 26,54 % 23,90 %
0-24 22 36 59 -14 -37 -38,89 % -62,71 %
25-44 936 347 291 589 645 169,74 % 221,65 %
45-64 3843 3175 3319 668 524 21,04 % 15,79 %
65-74 3 260 2511 2509 749 751 29,83 % 29,93 %
75-84 2643 2141 2145 502 458 2345 % 23,22 %
85+ 2693 2377 2490 316 203 13,29 % 8,15 %
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ACM/w, Florida, 2015-2022
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State w50c w50c-1  w50c-2 pVax-pCVD  Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Florida | 254 311 241142 202 396 38 746 51915 19,14 % 25,65 %
0-24 4 246 3914 3735 179 511 4,79 % 13,68 %
25-44| 14563 12158 9761 2397 4 802 24,56 % 49,20 %
45-64 | 48930 42173 36 005 6 168 12 925 17,13 % 35,90 %
65-74| 51262 47070 38774 8 296 12 488 21,40 % 32,21 %
75-84| 63449 61704 50625 11079 12 824 21,88 % 2533 %
85+ 71861 74123 63 496 10 627 8 365 16,74 % 13,17 %
State wil00c  w100c-1 w100c-2 xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
E Florida | 495 453 398 793 393 327 96 660 102 126 24,24 % 25,96 %
0-24 8 160 7465 7756 695 404 9,31 % 521 %
25-44 26721 18 935 18 746 7786 7975 41,12 % 42,54 %

45-64 | 91103 72034 72573 19 069 18 530 26,47 % 25,53 %
65-74| 98332 76374 73622 21958 24710 28,75 % 33,56 %
75-84| 125153 99095 94 775 26 058 30 378 26,30 % 32,05 %
85+ 145 984 124 890 125 855 21094 20129 16,89 % 15,99 %
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ACM/w, Georgia, 2015-2022
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State w50c w50c-1  wh0c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD Vax-pCVD/pCVD
B Georgia | 105 894 106 369 83 159 23 210 22735 27,91 % 27,34 %
0-24 2536 2336 2 241 95 295 4,24 % 13,16 %
25-44 7315 6 344 4711 1633 2 604 34,66 % 55,27 %
45-64 24759 23038 18 416 4622 6343 2510 % 34,44 %
65-74 23743 23429 17 926 5503 5817 30,70 % 32,45 %
75-84 25142 26114 19 957 6 157 5185 30,85 % 25,98 %
85+ 22399 25108 19908 5200 2 497 26,12 % 12,51 %
State wl00c  w100c-1 wi100c-2  xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
E Georgia | 212263 164 114 161 001 48 149 51262 29,34 % 31,84 %
0-24 4872 4 485 4718 387 154 8,63 % 3,26 %
25-44 13 659 9 269 9126 4390 4533 47,36 % 49,67 %
45-64 47797 36462 36733 11 335 11 064 31,09 % 30,12 %
65-74 47172 35484 33 934 11 688 13 238 32,94 % 39,01 %
75-84 51256 38993 37 373 12 263 13 883 31,45 % 37,15 %
85+ 47507 39421 39 117 8 086 8 390 20,51 % 21,45 %
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ACM/w, Hawaii, 2015-2022
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State w50c  wb0c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVvD
E Hawaii | 12 364 11009 10 823 186 1541 1,72 % 14,24 %
25-44 439 260 285 -25 154 -8,77 % 54,04 %
45-64 | 2300 2002 1955 47 345 2,40 % 17,65 %
65-74| 2509 2256 2 068 188 441 9,09 % 21,32 %
75-84 | 2747 2448 2299 149 448 6,48 % 1949 %
85+ 4369 4043 4216 -173 153 -4,10 % 363 %
State wi100c w100c-1 wi100c-2 xDc(100)1  xDc{100)2  xDc(100)1% xDc(100)2%
B Hawaii | 23373 21410 20938 1963 2435 9,17 % 11,63 %
0-24 13 11 -13 =11 -100,00 %  -100,00 %
25-44 699 505 386 194 313 38,42 % 81,09 %
45-64 | 4302 5 901 3 588 401 414 10,28 % 10,65 %
65-74 | 4765 4173 3 986 592 779 14,19 % 19,54 %
75-84 5195 4 568 4512 627 683 13,73 % 15,14 %
85+ 8412 8 250 8155 162 257 1,96 % 3,15 %
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ACM/w, Idaho, 2015-2022
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State wb0c  wb50c-1 wb50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD Vax-pCVD/pCVD
E Idaho | 17 644 15848 13 195 2653 4 449 20,11 % 33,72 %

0-24 85 92 35 57 50 162,86 % 142,86 %
25-44 885 710 342 368 543 107,60 % 158,77 %
45-64 | 3203 2631 2216 415 987 18,73 % 44,54 %
65-74 | 3838 3234 2 647 587 1197 22,18 % 44,99 %
75-84 | 4638 4292 3670 622 968 16,95 % 26,38 %
85+ 4995 4889 4285 604 710 14,10 % 16,57 %
State w100c  w100c-1 w100c-2 xDc(100)1  xDec(100)2  xDc(100)1% xDc(100)2%
E Idaho | 33492 26294 25 626 7198 7 866 27,38 % 30,70 %
0-24 177 76 109 101 68 132,869 % 62,39 %
25-44 1595 784 861 811 734 103,44 % 85,25 %
45-64 | 5834 4 436 4482 1398 1352 31,51 % 30,17 %
65-74| 7072 5334 5034 1738 2038 32,58 % 40,48 %
75-84 | 8930 7136 6777 1794 2153 25,14 % 31,77 %
85+ 9 884 8528 8363 1356 1521 15,90 % 18,19 %
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ACM/w, Illinois, 2015-2022
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State w50c w50c-1  wbS0c-2 pVax-pCVD  Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
= Illinois | 118 278 126531 101 962 24 569 16 316 24,10 % 16,00 %
0-24 2342 2264 IR 265 343 13,26 % 17,16 %
25-44 6561 6078 4 869 1209 1692 24,83 % 34,75 %
45-64 | 23031 22956 18 692 4264 4339 22,81 % 23,21 %
65-74| 24066 24816 19 398 5418 4668 27,93 % 24,06 %
75-84 | 27993 30258 24 060 6198 3933 25,76 % 16,35 %
85+ 34285 40159 32944 7215 1341 21,90 % 4,07 %
State w100c w100c-1 w100c-2 xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
B Illinois | 244 809 202 621 204 365 42 188 40 444 20,82 % 19,79 %
0-24 4 606 4153 4871 453 -265 10,91 % -5,44 %
25-44 12 639 9618 9432 3021 3207 31,41 % 34,00 %
45-b4 45987 37 349 37 681 8 638 8 306 23,13 % 22,04 %

65-74 | 48882 37830 36761 10992 12121 29,01 % 32,97 %
75-84 | 58251 47770 47 456 10 481 10795 21,94 % 22,75 %
85+ 74444 65 841 68 164 8 603 b 280 13,07 % 9,21 %
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ACM/w, Indiana, 2015-2022
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State w50c  w50c-T wb0c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
Bl Indiana | 76 829 78 173 64 270 13 903 12 559 21,63 % 19,54 %
0-24 1665 1604 1416 188 249 13,28 % 17,58 %
25-44 | 4644 4151 3271 880 1373 26,90 % 41,97 %
45-64 | 15699 14535 12 203 2332 3 496 19,11 % 28,65 %
65-74 | 16899 15906 13 091 2815 3 808 21,50 % 29,09 %
75-84 | 18571 19 361 15 660 3 701 2911 23,63 % 18,59 %
85+ 19351 22616 18 629 3987 722 21,40 % 3,68 %
State w100c  w100c-1 wi100c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
B Indiana | 155 002 126 889 126 175 28113 28 827 22,16 % 22,85 %
0-24 3 269 2 867 3072 402 197 14,02 % 641 %
25-44 8795 6374 6 500 2421 2295 37,98 % 3531%
45-64 30234 24 538 24 912 5696 5322 23,21 % 21,36 %
65-74 32805 25463 23769 7342 9036 28,83 % 38,02 %
75-84 37932 30788 30 109 7144 7823 23,20 % 25,98 %
85+ 41967 36859 37813 5108 4154 13,86 % 10,99 %
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ACM/w, lowa, 2015-2022
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State w50c  wb0c-1 wb0c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCvD/pCVD
E lowa 32816 34471 29 263 5208 3553 17,80 % 12,14 %
0-24 158 286 247 45 -83 18,67 % -34.44 %
25-44 | 1331 1264 1034 230 297 22,24 % 28,72 %
45-64 | 5695 5394 4761 633 934 13,30 % 19,62 %
65-74| 6725 6485 5255 1230 1470 23,41 % 27,97 %
75-84 | 8171 8417 7205 1212 966 16,82 % 1341 %
85+ 10736 12625 10 767 1858 -31 17,26 % -0,29 %
State wl00c wi100c-1 wi100c-2  xDc(100)1  xDc{100)2 =Dc(100)1% xDc{100)2%
E lowa 67 287 57708 57 265 9579 10 022 16,60 % 17,50 %
0-24 444 461 689 =17 -245 -3,69 % -35,56 %
25-44 | 2595 1979 1871 616 724 31,13 % 38,70 %
45-64 | 11089 9371 9 268 1718 1821 18,33 % 19,65 %
65-74 | 13210 10376 9819 2 834 3 391 27,31 % 34,54 %
75-84 | 16588 14159 13 598 2429 2990 17,16 % 21,99 %
85+ 23 361 21362 22 020 1999 134 9,36 % 6,09 %
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ACM/w, Kansas, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVvD pVax-pCVD/pCVD  Vax-pCvD/pCVD
= Kansas | 30 110 30 583 25 450 5133 4 660 20,17 % 18,31 %
0-24 458 409 356 53 102 14,89 % 28,65 %
25-44 | 1653 1410 1133 277 520 24,45 % 4590 %
45-64 | 5639 5243 4 497 746 1142 16,59 % 25,39 %
65-74 | 6289 5949 4 848 1101 1441 22,71 % 29,72 %
75-84 | 7217 7452 6080 1372 1137 22,57 % 18,70 %
85+ 8854 10120 8536 1584 318 18,56 % 373 %
State wi100c w100c-1 w100c-2 xDc(100)1  xDc(100)2  xDc(100)1% xDc(100)2%
E Kansas | 60693 50329 49 999 10 364 10 694 20,59 % 21,39 %
0-24 867 644 813 223 54 34,63 % 6,64 %
25-44 1 3063 2203 2072 860 991 39,04 % 47,83 %
45-64 | 10 882 8 826 9 066 2 056 1816 23,29 % 20,03 %
65-74 | 12 238 9 565 8 879 2673 3 359 27,95 % 37,83 %
75-84 | 14669 11964 11924 2 705 2 745 22,61 % 23,02 %
85+ 18974 17127 17 245 1847 1729 10,78 % 10,03 %
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ACM/w, Kentucky, 2015-2022
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State w50c  w50c-1 wb50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Kentucky | 58 357 55 261 46 760 8501 11 597 18,18 % 24,80 %
0-24 1068 1034 771 263 297 34,11 % 38,52 %
25-44 3891 3546 2548 998 1343 3917 % 52,71 %
45-64 13668 11974 10 345 1631 3325 1577 % 32,15 %
65-74 13415 11993 10034 1959 3379 1952 % 33,66 %
75-84 14165 13426 11 649 1777 2516 15,25 % 21,60 %
85+ 12152 13288 11415 1873 737 1641 % 6,46 %
State w100c wi100c-1 w100c-2  xDc(100)1  xDc(100)2  xDc(100)1%  xDc(100)2%
= Kentucky | 113618 92 731 92 284 20 887 21334 22,52 % 23,12 %
0-24 2102 1549 1801 553 301 3570 % 16,71 %
25-44 7437 5136 5419 2 301 2018 44,80 % 37,24 %
45-64 25642 20508 20939 5134 4703 25,03 % 22,46 %
65-74 25406 19978 19322 5428 6 084 2717 % 31,49 %
75-84 27591 22933 22 005 4 658 5586 20,31 % 25,39 %
85+ 25440 22627 22 798 2813 2642 12,43 % 11,59 %
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ACM/w, Louisiana, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Louisiana | 54 566 56 915 44 401 12514 10 165 28,18 % 22,89 %
0-24 1427 1363 1228 135 199 10,99 % 16,21 %
25-44 4318 3856 2853 1003 1465 3516 % 51,35%
45-64 12638 12261 9786 2475 2 852 25,29 % 29,14 %
65-74 12109 12 467 9390 3077 2719 32,77 % 28,96 %
75-84 12456 13540 10 437 3103 2019 29,73 % 19,34 %
85+ 11618 13428 10707 2721 911 2541 % 8,51%
State wl100c  w100c-1 w100c-2 xDec(100)1  xDc(100)2  xDc(100)1% xDc(100)2%
E Louisiana | 111 481 88 207 87 706 23274 23775 26,39 % 2711 %
0-24 2790 2419 2553 371 237 15,34 % 9,28 %
25-44 5174 5493 5505 2 681 2 669 48,81 % 48,48 %
45-64 24899 19582 20 137 5317 4762 27,15 % 23,65 %
65-74 24576 18 668 17 936 5908 6 640 31,65 % 37,02 %
75-84 2599 20673 20 090 5323 5906 2575 % 29,40 %
85+ 25046 21372 21 485 3674 3 561 17,19 % 16,57 %
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ACM/w, Maine, 2015-2022
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State w50c  wb0c-1 wb50c-2 pVax-pCVvD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCvD/pCVD
E Maine | 16503 14779 13 960 819 2543 5,87 % 18,22 %
25-44 769 501 439 62 330 14,12 % 7517 %
45-64 | 2987 2558 2 360 198 627 839 % 26,57 %
65-74| 3383 2939 2754 185 629 6,72 % 22,84 %
75-84 | 4268 3887 3 680 207 588 563 % 15,98 %
85+ 509 4894 4727 167 369 353 % 7,81 %
State wi100c w100c-1 wi100c-2  xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
E Maine | 31282 27616 26 845 3 666 4 437 13,27 % 16,53 %
0-24 11 -1 -100,00 %
25-44 1270 771 629 499 641 64,72 % 101,91 %
45-64 | 5545 4717 4715 828 830 17,55 % 17,60 %
65-74 | 6322 5417 5219 905 1103 16,71 % 21,13 %
75-64 | 8155 7275 6763 880 1392 12,10 % 20,58 %
85+ 9930 9 436 9508 554 4382 587 % 507 %
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ACM/w, Maryland, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCvD/pCVD
E Maryland | 55 398 59 489 48 222 11 267 7176 23,36 % 14,88 %
0-24 1061 1095 1026 69 35 6,73 % 341 %
25-44 3538 3553 2802 651 636 2243 % 21,92 %
45-64 11118 11338 9188 2150 1930 23,40 % 21,01 %
65-74 11105 11580 9121 2459 1984 26,96 % 21,75 %
75-84 13114 13901 11 241 2 660 1873 23,66 % 16,66 %

85+ 15462 18022 14744 3278 718 2223 % 4,87 %
State wi100c  w100c-1 w100c-2 ¥Dc(100)1  xDc(100)2  xDc(100)1%  xDc(100)2%
= Maryland | 114 887 96 100 95 443 18 787 19 444 19,55 % 20,37 %
0-24 2156 1996 2228 160 -72 8,02 % -3,23 %
25-44 7091 5667 5586 1424 1 505 25,13 % 26,94 %
45-64 22456 18738 19 149 3718 3 307 19,84 % 17,27 %
65-74 22685 17940 17 401 4745 5284 26,45 % 30,37 %
75-84 27015 22179 21371 4 836 5644 21,80 % 26,41 %

85+ 33484 29580 29708 3904 3776 13,20 % 12,71 %
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ACM/w, Massachusetts, 2015-2022
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State w50c  w50c-1T wb0c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Massachusetts | 61 239 67 951 56 925 11026 4314 19.37 % 7.58 %
0-24 727 687 729 -42 -2 -576 % -0,27 %
25-44 3001 2947 2606 341 395 13,09 % 15,16 %
45-64 10340 10417 9103 1314 1237 14,43 % 13,59 %
65-74 11565 12074 9874 2200 1691 22,28 % 17,13 %
75-84 14907 16338 13 233 3 105 1674 23,46 % 12,65 %
85+ 20699 25488 21380 4108 -681 19,21 % -3,19%
State wi100c  w100c-1 w100c-2 xDc(100)1 xDec(100)2 xDc(100)1% xDc(100)2%
= Massachusetts | 129 190 113 969 113 881 15 221 15 309 13,36 % 13,44 %
0-24 1414 1517 1732 -103 -318 -6,79 % -18,36 %
25-44 5948 5178 5369 770 579 14,87 % 10,78 %
A45-64 20757 18424 18 431 2333 2326 12,66 % 12,62 %
65-74 23639 19498 18 994 4141 4 645 21,24 % 24,46 %
75-84 31245 26646 25754 4 599 5491 17,26 % 21,32 %
85+ 46187 42706 43 601 3481 2 586 8,15 % 5,93 %
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ACM/w. Michigan, 2015-2022
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State w50c wb50c-1  wbS0c-2 pVax-pCVD  Vax-pCVD  pVax-pCVD/pCVD  Vax-pCvD/pCvD
B Michigan | 113 485 112 822 94 128 18 694 19 357 19,86 % 20,56 %
0-24 1934 1893 1761 132 173 7,50 % 9,82 %
25-44 6025 5275 4220 1055 1805 25,00 % 4277 %
45-64 22338 20541 17 338 3203 5000 18,47 % 28,84 %
65-74 24433 23162 18 759 4403 5674 23,47 % 30,25 %
75-84 27303 27635 22 510 5125 4793 22,77 % 21,29 %
85+ 31452 343176 29 540 4776 1912 16,17 % 6,47 %
State w100c  w100c-1 w100c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
E Michigan | 226 307 186 135 185 124 40172 41 183 21,58 % 22,25 %
0-24 3827 3 545 3925 282 -98 7,95 % -2,50 %
25-44 11 300 8 506 8678 2794 2622 32,85 % 30,21 %
45-64 42879 34529 35 867 8 350 7012 24,18 % 19,55 %
65-74 47595 36566 34 791 11029 12 804 30,16 % 36,80 %
75-84 54938 44 486 42 235 10452 12703 23,50 % 30,08 %
85+ 65768 58503 59628 7265 6 140 12,42 % 10,30 %
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ACM/w, Minnesota, 2015-2022
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State w50c  w50c-1T wb0c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD Vax-pCVD/pCVD
E Minnesota | 50 304 50 330 43 879 6 451 6425 14,70 % 14,64 %
0-24 956 863 873 -10 83 -1.15 % 9,51 %
25-44 2605 2192 1797 395 808 2198 % 44,96 %
45-64 8590 7715 6792 923 1798 13,59 % 26,47 %
65-74 9716 8831 7725 1156 1991 14,96 % 2577 %
75-84 12172 12487 10 566 1921 1606 18,18 % 15,20 %
85+ 16265 18192 16 126 2 066 139 12,81 % 0,86 %
State w100c wl100c-T wi100c-2  xDc(100)1  xDc(100)2  xDc(100)1%  xDc(100)2%
E Minnesota | 100 634 86 529 84 447 14 105 16 187 16,30 % 19,17 %
0-24 1819 1680 1644 139 175 8,27 % 10,64 %
25-44 4797 340 3117 1396 1680 41,05 % 53,90 %
45-64 16305 13655 13 814 2 650 2491 19,41 % 18,03 %
65-74 18597 15115 14 132 3482 4 465 23,04 % 31,59 %
75-84 24659 20714 19 494 3945 5165 19,05 % 26,50 %
85+ 34457 31964 32 246 2493 2211 7,80 % 6,86 %
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ACM/w, Mississippi, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Mississippi | 38 329 39 923 30592 9331 7737 30,50 % 25,29 %
0-24 1013 851 746 105 267 14,08 % 3579 %
25-44 2674 2399 1776 623 898 35,08 % 50,56 %
45-64 9130 82814 6 798 2016 2332 29,66 % 34,30 %
65-74 6851 9048 6 668 2 380 2183 3569 % 32,74 %
75-84 8943 9738 7 464 2274 1479 30,47 % 19,82 %
85+ 7718 9073 7140 1933 578 27,07 % 8,10 %
State wi100c wi100c-T w100c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc{100)2%
E Mississippi | 78 252 60 594 60 446 17 658 17 806 29,14 % 29,46 %
0-24 1 864 1430 1454 374 430 25,10 % 29,99 %
25-44 5073 3427 3318 1646 1755 48,03 % 52,89 %
45-64 17944 13636 14 150 4308 3794 31,59 % 26,81 %
65-74 17899 13154 12 615 4745 5284 36,07 % 41,89 %
75-84 18 681 14 636 14 282 4045 4399 27,64 % 30,80 %
B85+ 16 791 14 251 14 647 2 540 2144 17,682 % 14,64 %
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ACM/w, Missouri, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVvD
= Missouri | 74 286 75 191 62 319 12 872 11 967 20,66 % 19,20 %
0-24 1608 1631 1524 107 84 7,02 % 551 %
25-44 4529 4051 3355 696 1174 20,75 % 34,99 %
45-64 15652 13917 12 090 1827 3 562 1511 % 29,46 %
65-74 16015 15360 12 592 2768 3423 21,98 % 27,18 %
75-84 17690 18724 15 041 3 683 2 649 24,49 % 17,61 %
85+ 18792 21508 17 717 379 1075 21,40 % 6,07 %
State w100c w100c-T wi100c-2  xDc(100)1  xDc(100)2 xDc(100)1%  xDc(100)2%
= Missouri | 149 477 123 724 123 330 25753 26 147 20,81 % 21,20 %
0-24 3239 3070 3194 169 45 5,50 % 141 %
25-44 8580 6638 6 249 1942 2331 29,26 % 37,30 %
45-64 29569 24354 24 210 5215 5359 21,41 % 22,14 %
65-74 31375 24781 23 848 6594 7527 26,61 % 31,56 %
75-84 36414 29894 29 590 6 520 6 824 21,81 % 23,06 %
85+ 40 300 34 987 36 239 5313 4061 15,19 % 11,21 %
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ACM/w, Montana, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCvD/pCVD
E Montana | 12 146 11 250 9 436 1814 2710 19,22 % 28,72 %
0-24 11 11 Infinity
25-44 581 400 195 207 388 107,25 % 201,04 %
45-64 2306 1990 1667 323 639 19,38 % 3833 %
65-74 2663 2366 1979 387 684 19,56 % 34,56 %
75-84 3220 2948 2520 428 700 16,98 % 27,78 %
85+ 3376 3535 3077 458 299 14,88 % 9,72 %
State wi100c w100c-1 w100¢c-2 xDc(100)1  xDc(100)2  xDe(100)1%  xDc(100)2%
E Montana | 23396 18 766 18 495 4 630 4901 24,67 % 26,50 %
0-24 11 11 11 Infinity Infinity
25-44 981 406 360 575 621 141,63 % 172,50 %
45-64 4 296 3 366 3414 930 882 27,63 % 2583 %
65-74 5029 3924 3672 1105 1357 28,16 % 36,96 %
75-84 6 168 4942 4767 1226 1401 24,81 % 2939 %
85+ 6911 6128 6282 783 629 12,78 % 10,01 %
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ACM/w, Nebraska, 2015-2022
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2016 2017 2018 2019 2020 2021 2022
State w50c  w50c-1 w50c-2 pVax-pCVD  Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Nebraska | 18 374 18 842 15 921 2921 2453 18,35 % 15,41 %
0-24 172 126 61 65 117 106,56 % 181,97 %
25-44 761 710 458 252 303 55,02 % 66,16 %
45-64 3315 3067 2698 369 617 13,68 % 22,87 %
65-74 3792 3671 3003 668 789 22,24 % 26,27 %
75-84 4430 4713 3948 765 482 19,38 % 12,21 %
85+ 5904 6555 5753 802 157 13,94 % 2,62 %
State w100c w100c-1 w100c-2 xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
E Nebraska | 37 216 31 875 31706 5341 5510 16,76 % 17,38 %
0-24 298 160 214 136 84 86,25 % 39,25 %
25-44 1471 1011 915 460 558 45,50 % 61,12%
45-64 b 382 5438 5388 944 994 17,36 % 18,45 %
65-74 7463 5958 5647 1505 1816 25,26 % 32,16 %
75-84 5143 7792 7657 1351 1492 17,34 % 19,50 %
85+ 12459 115716 11893 943 566 819 % 4,76 %
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ACM/w, Nevada, 2015-2022
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2016 2017 2018 2019 2020 2021 2022 2
State w50c  w50c-1T w0c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Nevada | 32 484 31616 25212 6 404 7272 25,40 % 28,84 %
0-24 558 484 378 106 180 28,04 % 47,62 %
25-44 2190 1843 1337 506 853 37,85 % 63,80 %
45-64 71202 6642 5316 1326 1886 24,94 % 3548 %
65-74 7720 7342 5791 1551 1929 26,78 % 3331 %
75-84 8375 8343 6 564 1779 1811 27,10 % 27,59 %
85+ 6439 6962 5826 1136 613 19,50 % 10,52 %
State w100c w100c-1 wi100c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
El Nevada | 64 100 49510 48 384 14 590 15716 29,47 % 32,48 %
0-24 1042 667 817 375 225 56,22 % 27,54 %
25-44 4033 2734 2749 1299 1284 47,51 % 46,71 %
45-64 | 13844 10562 10 650 3282 3194 31,07 % 29,99 %
65-74 | 15062 11470 11050 3592 4012 31,32 % 36,31 %
75-84 | 16718 12803 12 084 3915 4634 30,58 % 38,35 %
85+ 13 401 11274 11034 2127 2 367 18,87 % 21,45 %
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ACM/w, New Hampshire, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD Vax-pCVD/pCVD
El New Hampshire | 13 154 12 925 11417 1508 1737 13,21 % 15,21 %
25-44 586 345 267 78 319 29,21 % 119,48 %
45-64 2333 2048 2043 5 290 0,24 % 14,19 %
65-74 2728 2530 2190 340 538 15,53 % 24,57 %
75-84 3393 3299 2 887 412 506 14,27 % 17,53 %
85+ 4114 4703 4030 673 84 16,70 % 2,08 %
State w100c w100c-1 w100c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
E New Hampshire | 26 079 23 030 22704 3049 3375 13,24 % 14,87 %
25-44 931 584 755 347 176 59,42 % 2331 %
45-64 4 387 4126 4137 255 244 6,18 % 590 %
65-74 5258 4 385 4108 873 1150 19,91 % 27,99 %
75-84 6692 5739 5548 953 1144 16,61 % 20,62 %
85+ 8817 8 196 8 156 621 661 7,58 % 8,10 %
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ACM/w, New Jersey, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD Vax-pCVD/pCVD
=l New Jersey | 80 676 95 415 70933 24 482 9743 3451 % 13,74 %
0-24 959 973 957 16 2 1,67 % 021 %
25-44 3959 4161 3272 889 687 27,17 % 21,00 %
45-64 14526 16878 11741 5137 2785 43,75 % 23,72 %
65-74 15154 17563 12 243 5320 2911 4345 % 23,78 %
75-84 19414 23160 16 787 6373 2627 37,96 % 15,65 %
85+ 26 664 32680 25933 6747 731 26,02 % 2,82 %
State wl100c  wi100c-1 wi100c-2 xDc(100)1  xDc(100)2  xDc(100)1% xDc(100)2%
= New Jersey | 176 091 142 025 141 664 34 066 34 427 23,99 % 24,30 %
0-24 1932 1984 2186 -52 -254 -2,62 % -11,62 %
25-44 8120 6 602 6392 1518 1728 22,99 % 27,03 %
45-64 31404 23852 24 287 7552 7117 31,66 % 29,30 %
65-74 32717 24423 23 526 8294 9191 33,96 % 39,07 %
75-84 42574 33 345 32755 9229 9819 27,68 % 29,98 %
85+ 59344 51819 52518 7525 6 826 14,52 % 13,00 %
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ACM/w, New Mexico, 2015-2022
700 24K
600
22K
550 §
21K 2
Z 500 §
£ 20K o
& 450 c
19K E
400 L 3
)\‘ 18K
ol gl
) i vV
300 MJJAL‘““ | ' il 7K
250 16K
2016 2017 2018 2019 2020 2021 2022
State wh0c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
E New Mexico | 23 619 22 829 17 810 5019 5809 28,18 % 32,62 %
0-24 357 200 206 -6 151 -2,91 % 73,30 %
25-44 2459 2025 1478 547 981 37.01 % 66,37 %
45-64 5237 4771 3 656 1115 1581 30,50 % 43,24 %
65-74 4826 4644 3489 1155 1357 33,10 % 3832 %
75-84 5176 5397 4142 1255 1034 30,30 % 24,96 %
85+ 5564 5792 4839 953 725 19,69 % 14,98 %
State wi100c  w100c-1 w100c-2 xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
E New Mexico | 46 448 35203 33976 11 245 12472 31,94 % 36,71 %
0-24 557 352 407 205 150 58,24 % 36,86 %
25-44 4 484 2772 2476 1712 2008 61,76 % 81,10 %
45-64 10 008 7181 7105 2827 2903 39,37 % 40,86 %
65-74 5470 7021 6628 2445 2842 34,88 % 42,88 %
75-84 10 573 8184 7836 2389 2737 29,19 % 34,93 %
85+ 11 356 9693 9524 1663 1832 17,16 % 19,24 %
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ACM/w, New York, 2015-2022
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State w50c w50c-1  w50c-2 pVax-pCVD  Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
= New York | 170 873 202806 148 501 54 305 22 372 36,57 % 15,07 %
0-24 2482 2498 2441 57 41 2,34 % 1,68 %
25-44 8 644 8910 6342 2 568 2302 40,49 % 36,30 %
45-64 31464 35813 25 388 10 425 6 076 41,06 % 23,93 %
65-74 33371 38953 27197 11756 6174 43,23 % 22,70 %
75-84 40363 48635 34 947 13 688 5416 39,17 % 15,50 %
85+ 54549 67997 52 186 15811 2363 30,30 % 453 %
State w100c w100c-1 w100c-2 xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
=l New York | 373 679 296 046 296 515 77 633 77 164 26,22 % 26,02 %
0-24 4 980 4877 5261 103 -281 2,11 % -5,34 %
25-44 17554 12 381 12 444 5173 5110 41,78 % 41,06 %
45-64 67 277 51057 52 583 16 220 14 694 31,77 % 27,94 %
65-74 72324 53676 52079 18 648 20 245 34,74 % 38,87 %
75-84 88998 69598 67 835 19 400 21163 27,87 % 31,20 %
85+ 122 546 104 457 106 313 18 089 16 233 17,32 % 15,27 %
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ACM/w, North Carolina, 2015-2022
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State w50c w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
= North Carolina | 111 328 111 321 92 780 18 541 18 548 19,98 % 19,99 %
0-24 2 450 2432 2129 303 321 14,23 % 15,08 %
25-44 7240 6267 4 851 1416 2 389 2919 % 49,25 %
45-64 25868 21405 18 146 3259 5722 17,96 % 3153 %
65-74 24093 23316 19 145 4171 4948 21,79 % 25,84 %
75-84 26905 28108 23053 5055 3852 21,93 % 16,71 %
85+ 26772 29793 25456 4337 1316 17,04 % 517 %
State w100c  w100c-1 w100c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
E North Carolina | 222 649 183 230 179 440 39 419 43 209 21,51 % 24,08 %
0-24 4 882 4213 4383 669 499 15,88 % 11,38 %
25-44 13 507 9552 9 201 3955 4 306 41,40 % 46,80 %
45-64 45273 36 207 36731 9 066 8542 25,04 % 23,26 %
65-74 47409 37821 36709 9588 10700 25,35% 29,15 %
75-84 55013 45397 42 877 9616 12136 21,18 % 28,30 %
85+ 56565 50040 49 539 6525 7026 13,04 % 14,18 %
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ACM/w, North Dakota, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD  Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
E North Dakota | 7601 7977 6 786 1191 815 17,55 % 12,01 %
25-44 328 183 112 71 216 63,39 % 192,86 %
45-64 1535 1332 1231 101 304 8,20 % 24,70 %
65-74 1612 1496 1260 236 352 18,73 % 27,94 %
75-84 1817 1987 1656 331 161 19,99 % 972 %
85+ 2309 2979 2527 452 -218 17,89 % -8,63 %
State wi100c  w100c-1 wi100c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
= North Dakota | 15578 13 006 12 590 2572 2988 19,78 % 23,73 %
0-24 13 -13 -100,00 %
25-44 51 159 106 352 405 221,38 % 382,08 %
45-64 2 867 2 388 2232 479 635 20,06 % 28,45 %
65-74 3108 2420 2206 668 902 2843 % 40,89 %
75-84 3804 3 169 3101 635 703 20,04 % 22,67 %
85+ 5288 4870 4932 418 356 8,58 % 7,22 %
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ACM/w, Ohio, 2015-2022
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State w50c w50c-1  w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Ohio 143 192 143472 118385 25087 24 807 21,19 % 20,95 %
0-24 2 657 2511 2379 132 278 555 % 11,69 %
25-44 8147 7364 6125 1239 2022 20,23 % 33,01 %
45-64 | 28907 25907 22227 3 680 6 680 16,56 % 30,05 %
65-74 | 31158 288617 23323 5538 7835 23,74 % 33,59 %
75-84 | 34083 35299 28731 6 568 5352 22,86 % 18,63 %
85+ 38240 45530 35600 7930 2640 22,28 % 742 %
State w100c w100c-1 w100c-2 ¥Dc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
= Ohio 286 664 236 399 236 108 50 265 50 556 21,26 % 21,41 %
0-24 5168 4778 5452 390 -284 8,16 % -5,21 %
25-44 15511 12 105 12 705 3406 2 806 28,14 % 22,09 %
45-64 54814 44740 4571 10074 9113 22,52 % 19,94 %

65-74 | 60019 46070 43912 13 945 16 107 30,28 % 36,68 %
75-84| 69382 56900 55 164 12 482 14 218 21,94 % 25,77 %
85+ 81770 71806 73174 9 964 8596 13,88 % 11,75 %
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ACM/w, Oklahoma, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD Vax-pCVD/pCVD
= Oklahoma | 47 131 46 971 37 943 9028 9188 23,79 % 24,22 %
0-24 1002 905 837 68 165 812 % 19,71 %
25-44 2909 2409 1935 474 974 24,50 % 50,34 %
45-64 10477 9434 7957 1477 2520 18,56 % 31,67 %
65-74 10624 10359 8124 2235 2 500 2751 % 30,77 %
75-84 11575 11815 9473 2342 2102 2472 % 22,19 %
85+ 10544 12049 9617 2432 927 2529 % 9,64 %
State wi100c wi100c-1 wi00c-2  xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
= Oklahoma | 94 102 75 667 75 441 18 435 18 661 24,36 % 24,74 %
0-24 1907 1702 1901 205 6 12,04 % 0,32 %
25-44 5318 3878 40N 1440 1307 3713 % 3259 %
45-64 19 911 16 046 16 446 3 865 3 465 24,09 % 21,07 %
65-74 20983 16069 15273 4914 5710 30,58 % 3739%
75-84 23390 18690 18 270 4700 5120 2515 % 28,02 %
85+ 22593 19282 19 540 3311 5053 1717 % 15,62 %
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ACM/w, Oregon, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Oregon | 43 835 39 150 35 660 3490 8175 9,79 % 22,92 %
0-24 533 563 409 154 124 37,65 % 30,32 %
25-44 2304 1775 1504 271 800 18,02 % 53,19 %
45-64 | 7821 6725 6 044 681 1777 11,27 % 29,40 %
65-74 | 9353 8141 7350 791 2003 10,76 % 27,25 %
75-84 | 10998 9804 8 855 949 2143 10,72 % 24,20 %
85+ 12826 12142 11498 644 1328 5,60 % 11,55 %
State w100c w100c-1T w100c-2 xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
E Oregon | 82985 70186 69 886 12 799 13 099 18,24 % 18,74 %
0-24 109 310 1221 286 -125 3531 % -10,24 %
25-44 4079 2908 2674 1171 1405 40,27 % 52,54 %
45-64 | 14546 12130 12418 2416 2128 19,92 % 17,14 %
65-74 | 17494 14 370 13 648 3124 3 846 21,74 % 28,18 %
75-84 | 20802 17 248 16 525 3554 4277 20,67 % 25,88 %
85+ 24968 22720 23 400 2248 1568 9,89 % 6,70 %
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ACM/w, Pennsylvania, 2015-2022
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State w50c w50c-1 wh0c-2 pVax-pCVD  Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
B Pennsylvania | 149 833 156 171 129 421 26 750 20 412 20,67 % 15,77 %
0-24 2449 2306 2 200 106 249 4,82 % 11,32 %
25-44 7526 6 841 5952 889 1574 14,94 % 26,44 %
45-64 27122 25193 21797 3 396 5325 15,58 % 2443 %
65-74 30662 29558 23 564 5994 7098 2544 % 30,12 %
75-84 36201 37980 31103 6 877 5098 22,11 % 16,39 %
85+ 45873 54293 44 805 9 488 1068 21,18 % 2,38 %
State w100c  wi100c-1 wi100c-2  xDc(100)1  xDc(100)2  xDc(100)1% xDc(100)2%
= Pennsylvania | 306 004 258 285 262 088 47719 43 916 18,48 % 16,76 %
0-24 4755 4 505 5117 250 -362 555 % -7,07 %
25-44 14367 11912 12 488 2 455 1879 20,61 % 15,05 %
45-64 52315 43813 44 916 8502 7399 19,41 % 16,47 %
65-74 60220 46806 45 686 13414 14 534 28,66 % 51,81 %
75-84 74181 61353 60 729 12 828 15 452 20,91 % 22,15 %
85+ 100 166 89 896 93 152 10 270 7014 11,42 % 7,53 %
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ACM/w, Rhode Island. 2015-2022
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State w50c  wS0c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
5 Rhode Island | 10 674 11 651 9678 1973 996 20,39 % 10,29 %
25-44 263 195 129 66 134 51,16 % 103,88 %
45-64 1879 1875 1569 306 310 19,50 % 19,76 %
65-74 2131 2092 1677 415 454 2475 % 27,07 %
75-84 2607 2773 2 381 392 226 16,46 % 9,49 %
85+ 3794 4716 3922 794 -128 20,24 % -3,26 %
State w100c  w100c-1 w100c-2  xDc(100)1T  xDc(100)2  xDc(100)1%  xDe(100)2%
= Rhodelsland | 22 325 19 364 18 805 2 961 3520 15,29 % 18,72 %
25-44 458 221 223 237 235 107,24 % 105,38 %
45-64 3754 3156 3185 598 569 18,95 % 17,86 %
65-74 4223 3496 5283 727 940 20,80 % 28,63 %
75-84 5380 4656 4269 724 1111 15,55 % 26,02 %
B5+ 8510 7 835 7845 675 665 8,62 % 8,48 %
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ACM/w, South Carolina, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCvD/pCVD
E South Carolina | 59 495 61 227 48 298 12 929 11197 26,77 % 23,18 %
0-24 1375 1251 1165 86 210 7,38 % 18,03 %
25-44 4057 3464 2 689 775 1368 28,82 % 50,87 %
45-64 13074 12394 10034 2 360 3 040 23,52 % 30,30 %
65-74 13479 13421 10 339 3082 3140 29,81 % 30,37 %
75-84 14 355 15568 12 042 3526 2313 29,28 % 19,21 %
85+ 13155 15129 12 029 3100 1126 2577 % 9,36 %
State wil00c  w100c-1 w100c-2  xDc(100)T xDc(100)2 xDc(100)1% xDc(100)2%
E South Carolina | 120 722 95 381 92 782 25 341 27 940 26,57 % 30,11 %
0-24 2 626 2249 2215 377 411 16,76 % 18,56 %
25-44 7521 5306 4878 2215 2 643 41,75 % 54,18 %
45-64 25468 19904 20227 5564 524 27,95 % 25,91 %
65-74 26900 20460 19697 6 440 7203 31,48 % 36,57 %
75-84 29923 23582 22 209 6 341 7714 26,89 % 34,73 %
85+ 28284 23880 23 556 4404 4728 18,44 % 20,07 %
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ACM/w, South Dakota, 2015-2022
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9500

9 000

8 500

8 000

Deaths per 50-week period

7500

7 000

2016 2017 2018 2019 2020 2021 2022
State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD Vax-pCVD/pCVD
B South Dakota | 8 757 9 451 7579 1872 1178 24,70 % 15,54 %
0-24 11 22 22 11 Infinity Infinity
25-44 404 226 128 98 276 76,56 % 215,63 %
45-64 1686 1624 1353 271 333 20,03 % 2461 %
65-74 1857 1901 1410 491 447 34,82 % 31,70 %
75-84 2035 229 1852 438 183 23,65 % 9,88 %
85+ 2764 3388 2 836 552 -72 19,46 % -2,54 %
State w100c w100c-1 wi100c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
E South Dakota | 18 208 14 887 14 523 3321 3 685 22,31 % 25,37 %
0-24 33 12 33 21 Infinity 175,00 %
25-44 630 173 145 457 485 264,16 % 334,48 %
45-64 3310 2709 2626 601 684 22,19 % 26,05 %
65-74 3758 2817 2 630 941 1128 33,40 % 42,89 %
75-84 4325 3 605 3 495 720 830 19,97 % 23,75 %
a5+ 6152 5583 5615 569 537 10,19 % 9,56 %
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ACM/w, Tennessee, 2015-2022
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2016 2017 2018 2019 2020 2021 2022
State w50c  w50c-1T w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
E Tennessee | 91 144 88 685 73 230 15 455 17914 21,10 % 24,46 %
0-24 1950 1886 1808 78 142 431 % 7.85%
25-44 6538 5563 4242 1321 229 31,14 % 54,13 %
45-64 21321 18986 16 149 2 837 5172 17,57 % 32,03 %
65-74 20633 19287 15 666 3621 4967 23,11 % 31,71 %
75-84 21700 21871 17 823 4048 3877 22,71 % 21,75 %
85+ 19002 21092 17 542 3550 1460 20,24 % 832 %
State wil00c  wi100c-1 wi100c-2 xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
E Tennessee | 179 829 144 108 140 987 35721 38 842 24,79 % 27,55 %
0-24 3 836 3482 3 562 354 274 10,17 % 7,69 %
25-44 12101 8228 7690 3875 441 47,07 % 57,36 %
45-64 40 307 32050 31199 8 257 5108 25,76 % 29,19 %
65-74 39920 50640 30 163 g 280 9752 30,29 % 32,33 %
75-84 43571 35212 33 522 8 359 10049 23,74 % 29,98 %
85+ 40094 34 4%6 34 846 5558 5248 16,23 % 15,06 %
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ACM/w, Texas, 2015-2022
7500 270K
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6 000 240K ©
2 5500 230K g
& 5000 220K ';
4500 210K %
a
4000 200K
3500 190K
3000 180K
2016 2017 2018 2019 2020 2021 2022
State w50c w50c-1  wS0c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD Vax-pCVD/pCVD
B Texas | 255483 261182 198 282 62 900 57 201 31,72 % 28,85 %
0-24 6 854 6208 5914 294 940 497 % 15,89 %
25-44 | 18140 15019 11375 3644 6 765 32,04 % 5947 %
45-64 | 58218 55719 41722 13 997 16 496 33,55 % 39,54 %
65-74| 55639 56323 40744 15579 14 895 38,24 % 36,56 %
75-84 | 58693 62941 47 368 15573 11325 32,88 % 23,91 %
85+ 57939 64972 51159 13 813 6780 27,00 % 13,25 %
State w100c w100c-1 w100c-2 ¥xDc(100)1  xDc(100)2  xDc(100)1% xDc(100)2%

E Texas | 516665 391871 385718 124794 130 947 31.85% 33,95 %
0-24 13062 11536 11 887 1526 1175 13.23 % 9,88 %
25-44 | 33159 22116 271 662 11045 11497 49,93 % 53,07 %
45-64 | 115837 83 234 83 961 30705 29 976 36,89 % 35,70 %
65-74 | 111962 80 588 76293 31374 35 669 38,93 % 46,75 %
75-84 | 121634 92634 89 439 29 000 32195 31,31 % 36,00 %
85+ 122911 101763 102 476 21148 20 435 20,78 % 19,94 %
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ACM/w, Utah, 2015-2022
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2016 2017 2018 2019 2020 2021 2022
State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
B Utah 22658 21739 18 599 3140 4 059 16,88 % 21,82 %
0-24 630 561 657 -96 -27 -14,61 % -4.11 %
25-44 | 1633 1508 1209 299 424 2473 % 35,07 %
45-64 | 4290 3719 3 101 618 1189 19,93 % 3834 %
65-74 | 4324 4038 3293 745 1037 22,62 % 31,31 %
75-84 | 5533 5427 4 637 790 896 17,04 % 19,32 %
85+ 6248 6486 5702 784 546 13,75 % 9,58 %
State w100c w100c-1 wil00c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
B Utah 44 397 36 869 35575 7 528 8 822 20,42 % 24,80 %
0-24 1191 1261 1352 -70 -161 -5,55 % -11,91 %
25-44 3141 2514 2479 627 662 24,94 % 26,70 %
45-64 8 009 6324 6377 1685 1632 26,64 % 2559 %
65-74 8362 6 504 6 049 1858 2313 28,57 % 38,24 %
75-84 | 10960 9112 8 468 1848 2492 20,28 % 29,43 %
85+ 12734 11154 10 850 1580 1884 1417 % 17,36 %
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ACM/w, Vermont, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVvD Vax-pCVD/pCVD
E Vermont | 6116 5670 5121 549 995 10,72 % 19,43 %
25-44 65 11 11 65 Infinity Infinity
45-64 1066 971 859 112 207 13,04 % 24,10 %
65-74 1239 1149 1041 108 198 10,37 % 19,02 %
75-84 1584 1477 1293 184 291 14,23 % 22,51 %
85+ 2162 2062 1928 134 234 6,95 % 12,14 %
State w100c  w100c-1 wi100c-2 xDc(100)1  xDc(100)2  xDc(100)1% xDc(100)2%
E Vermont | 11786 10 251 10 487 1535 1299 14,97 % 12,39 %
25-44 76 22 24 54 52 245,45 % 216,67 %
45-64 2037 1717 1762 320 275 18,64 % 1561 %
65-74 2 388 2033 2013 355 375 17,46 % 18,63 %
75-84 3 061 2 622 2622 439 439 16,74 % 16,74 %
85+ 4224 3 857 4 066 367 158 9,52 % 3,89 %




376

ACM/w, Virginia, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD  pVax-pCVD/pCVD  Vax-pCVD/pCVD
B Virginia | 81 528 79 781 67 090 12 691 14 438 18,92 % 21,52 %
0-24 1629 1542 1380 162 249 11,74 % 18,04 %
25-44 45938 4014 3183 831 1415 26,11 % 44,45 %
45-64 | 16023 14750 12 577 2173 3 446 17,28 % 27,40 %
65-74 | 17048 15951 13 203 2748 3845 20,81 % 2912 %
75-84 | 20275 20044 16 648 3396 3627 20,40 % 21,79 %
85+ 21955 23480 20099 3 381 1856 16,82 % 923 %
State wl00c  w100c-1 wi100c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
E Virginia | 161 309 132 268 129 198 29 041 32111 21,96 % 24,85 %
0-24 3171 2763 2 805 408 366 14,77 % 13,05 %
25-44 5612 6 140 6011 2472 2 601 40,26 % 43,27 %
45-64 30773 25117 25 368 5656 5405 22,52 % 21,31 %
65-74 32999 25973 25049 7026 7950 27,05 % 31,74 %
75-84 40319 32878 30 842 7 441 9477 22,63 % 30,73 %
85+ 45435 39397 39123 b 038 6312 15,33 % 16,13 %
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ACM/w, Washington, 2015-2022
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State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD

E Washington | 67 133 61 338 55 503 5835 11 630 10,51 % 20,95 %
0-24 1254 1151 1050 101 204 9,62 % 1943 %
25-44 3807 3046 2 547 499 1260 19,59 % 49,47 %
45-64 12590 10944 9842 1102 2748 11,20 % 27,92 %
65-74 14137 12474 11251 1223 2 886 10,87 % 25,65 %
75-84 16219 14 840 13 375 1465 2844 10,95 % 21,26 %
85+ 19126 18883 17 438 1445 1688 8,29 % 9,68 %

State w100c  w100c-1 w100c-2 XDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%

= Washington | 128 471 110 222 108 022 18 249 20 449 16,56 % 18,93 %
0-24 2 405 2166 2164 239 241 11,03 % 11,14 %
25-44 6 853 5007 4757 1846 2 096 36,87 % 44,06 %
45-64 23534 19810 19911 3724 3623 18,80 % 18,20 %
65-74 26611 22149 20792 4 462 5819 20,15 % 27,99 %
75-84 31059 26296 24 644 4763 6415 18,11 % 26,03 %
85+ 38009 34794 35754 3215 2 255 9,24 % 6,31 %
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ACM/w, West Virginia, 2015-2022
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2016 2017 2018 2019 2020 2021 2022

State w50c  wb0c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
B West Virginia | 27 179 25 273 21712 3 561 5467 16,40 % 25,18 %
0-24 74 45 24 21 50 87,50 % 208,33 %
25-44 1728 1584 1284 300 444 23,36 % 34,58 %
45-64 6056 5201 4500 701 1556 15,58 % 34,58 %
65-74 6476 5630 4782 848 1694 17,73 % 3542 %
75-84 6654 6503 5548 955 1106 17,21 % 19,94 %

85+ 6191 6310 5574 736 617 13,20 % 11,07 %
State w100c  w100c-1 w100c-2  xDc(100)1  xDc(100)2 xDc(100)1% xDc(100)2%
E West Virginia | 52 452 43 057 42 839 9395 9613 21,82 % 22,44 %
0-24 119 98 152 21 -33 21,43 % -21,71 %
25-44 3312 2480 2 565 822 747 33,01 % 29,12 %
45-64 11257 8 956 9126 230 2131 25,69 % 23,35 %
65-74 12 106 9325 8 986 2781 3120 29,82 % 34,72 %
75-84 13157 11029 10 594 2128 2 563 19,29 % 24,19 %

85+ 12 501 11159 11 416 1342 1085 12,03 % 9,50 %
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ACM/w, Wisconsin, 2015-2022
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2016 2017 2018 2019 2020 2021 2022
State w50c  w50c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD Vax-pCVD/pCVD
E Wisconsin | 59 574 60 697 52 104 8593 7470 16,49 % 14,34 %
0-24 994 989 941 48 53 510 % 563 %
25-44 3025 2629 2095 534 930 2549 % 44,39 %
45-64 10348 9721 8 558 1163 1790 13,59 % 20,92 %
65-74 11824 11566 9558 2 008 2 266 21,01 % 23,71 %
75-84 14589 14815 12 685 2130 1904 16,79 % 15,01 %
85+ 18794 20977 18 267 2710 527 14,84 % 2,88 %
State wi100c  w100c-1 w100c-2 xDc(100)T  xDc(100)2 xDc(100)1% xDc(100)2%
E Wisconsin | 120 271 102801 100 748 17 470 19 523 16,99 % 19,38 %
0-24 1983 1849 2072 134 -89 7.25 % -4,30 %
25-44 5654 4094 4093 1560 1567 38,10 % 38,14 %
45-64 20069 17 000 16 852 3 069 3217 18,05 % 19,09 %
65-74 23390 18644 17 492 4746 5898 2546 % 33,72 %
75-84 29404 24819 23 580 4 585 5824 18,47 % 24,70 %
85+ 39771 36395 36 659 3376 3112 9,26 % 8,49 %
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ACM/w, Wyoming, 2015-2022
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State w50c  wS0c-1 w50c-2 pVax-pCVD Vax-pCVD pVax-pCVD/pCVD  Vax-pCVD/pCVD
= Wyoming | 5385 5018 4161 857 1224 20,60 % 29,42 %
25-44 77 24 24 77 Infinity Infinity
45-64 1167 992 868 124 299 14,29 % 34,45 %
65-74 1308 1128 883 245 425 27,75 % 48,13 %
75-84 1352 1354 1037 317 315 30,57 % 30,38 %
85+ 1481 1520 1373 147 108 10,71 % 7,87 %
State w100c wi100c-1 w100c-2  xDc(100)1 xDc(100)2 xDc(100)1% xDc(100)2%
= Wyoming | 10 403 8 247 7744 2156 2 659 26,14 % 34,34 %
25-44 101 23 78 101 339,13 % Infinity
45-64 2159 1662 1677 497 482 29,90 % 28,74 %
65-74 2 436 1736 1 606 700 830 40,32 % 51,68 %
75-84 2706 2115 1954 591 752 27,94 % 38,49 %
85+ 3001 2711 2 507 290 494 10,70 % 19,70 %
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Appendix B — Poverty and obesity maps of the USA
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Appendix C — ACM/w in the USA from 2015 to most recent data

ACM/w, USA, 2015-2022
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Data for this graph were retrieved from the CDC:

https://gis.cdc.gov/grasp/fluview/mortality.html
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Evaluating the Effect of Lockdowns On All-Cause Mortality
During the COVID Era: Lockdowns Did Not Save Lives

John A. Johnson'
Denis Rancourt?

Abstract

The USA and its 50 state jurisdictions provide a natural experiment to test whether excess
all-cause deaths can be directly attributed to implementing the social and economic structural
large-scale changes induced by ordering general-population lockdowns. Ten states had no
lockdown impositions and there are 38 pairs of lockdown/non-lockdown states that share a land
border. We find that the regulatory imposition and enforcement of state-wide shelter-in-place or
stay-at-home orders conclusively correlates with larger health-status-corrected, per capita,
all-cause mortality by state. This result is inconsistent with the hypothesis that lockdowns saved
lives.

Introduction

On March 11, 2020, the World Health Organization declared a pandemic based on a reported
outbreak in Wuhan, China of COVID-19 (hereafter COVID), the respiratory illness purportedly
caused by the SARS-CoV-2 virus. On March 13, 2020 a national emergency was declared in
the United States concerning the COVID-19 outbreak. In the US, this declaration resulted in a
heterogeneous set of responses from health authorities and government officials in various
states. Among those varied, state-wise policy responses, most states issued shelter-in-place or
stay-at-home orders in March and April of 2020 (hereafter referred to as “lockdowns”).

The motivation for these lockdown measures was to slow the spread of COVID-19 by limiting
social interactions, under the assumption that the disease spreads by person-to-person contact.
However, due to the independence of state governance in the US, the lockdown measures had
a wide range of implementation and enforcement, with some states foregoing lockdowns
altogether.

These differences in state-wise decisions to either lockdown or not thus establish a useful
experiment to test the hypothesis that lockdowns saved lives. This hypothesis predicts that
there should have been fewer deaths (per capita) in states that implemented lockdowns, and
more deaths in states that did not, after adjusting for differences in the health status of the state
populations, if all other factors are presumed to have lesser impact. The data available to test
these predictions can be found in all-cause mortality (ACM) by time and by state, reported by
the CDC.
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As demonstrated by other investigators (for example Rancourt, Baudin & Mercier 2021), ACM
sidesteps the difficult issue of cause-of-death assignation, which is political in nature, and as a
result susceptible to bias (e.g. Ealy et al. 2020). The correct dominant cause of death is rarely
known in the case of respiratory illnesses, and the death is normally not monocausal.

The advantage of analyzing ACM is that deaths in the US are recorded with high fidelity (no
reporting bias or underreporting). Once recorded, a death is a death, regardless of how the
cause is assigned on the death certificate. If lockdowns are effective in preventing deaths due to
the spread of a disease during a pandemic, then regions that implemented lockdowns should
have experienced fewer per capita deaths from all causes, if there are no overriding
confounding factors.

Data and Methodology

Our goal is to assess the efficacy of lockdowns in saving lives during the COVID era by
comparing the total number of deaths from all causes in pairs of states: one state with a
lockdown, and a state without a lockdown that shares a border with the lockdown state. We also
examined the lockdown states that do not share a border with any non-lockdown state, for
completeness.

We identified non-lockdown states by examining administrative and executive orders issued
during March-April 2020 by state governments in response to the pandemic declarations of the
WHO and of federal and state governments. Most of these orders have been archived at the
website Ballotpedia.com, and we located the orders for which the links were no longer valid by
searching state government websites. A full list of the URLSs for these orders are listed in Table #
in the Appendix. We assigned a “stringency” score to each executive order based on the
language of the lockdown order for the citizens of the state:

Ordered/mandated: 3
Directed: 2
Suggested/encouraged: 1
No order: 0

We found that there were seven (7) states that had scores of 0 because they did not issue
stay-at-home orders: North Dakota, South Dakota, Wyoming, lowa, Oklahoma, Nebraska, and
Arkansas. There were an additional three (3) states that had scores of 1 because the
governments only suggested or encouraged citizens to stay at home, but did not require them to
do so, nor provided means of enforcement: Utah, Kentucky and Tennessee.

Our criterion for lockdown versus non-lockdown states differs from previous studies in its
simplicity (i.e. focusing only on the stringency of the language in the executive orders). But our
resulting list of non-lockdown states includes all seven states listed as non-lockdown on


https://ocla.ca/nature-of-the-covid-era-public-health-disaster-in-the-usa/
https://www.researchgate.net/publication/344753727_COVID-19_Data_Collection_Comorbidity_Federal_Law_A_Historical_Retrospective
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Ballotpedia, and includes all four non-lockdown states identified by the CDC-sponsored study of
Moreland et al. (2020).

We compared the outcomes of these ten non-lockdown states with lockdown states that share a
border, under the assumption that viral spread is not impeded by state boundaries. In this study
we focus on the total all-cause mortality (ACM) over a specified time period as the metric of
lockdown efficacy. We use three time periods as described below.

We downloaded comma-separated-value (csv) files containing ACM per week for each state
from the CDC Wonder website. The CDC ACM data are listed by “season,” and these seasons
span calendar years. We remapped the season weeks onto a time axis in units of fractional
years. For example, for the 2013-2014 season, weeks 1-39 correspond to 2014, while week
numbers greater than 39 occur in 2013.

We divided the weekly ACM data for each state by that state’s population (US Census, April 1,
2020), resulting in the number of deaths per capita, per week (D,,). Throughout this report we
express D, as the number of deaths per 10,000 residents.

An additional correction step is necessary to allow for accurate state-by-state comparisons of
mortality. Differences in age distributions, obesity rates, poverty levels, physical and mental
disability rates, and other health determinants will lead to intrinsic differences in D, in various
states. These differences collectively manifest in an offset in D, seen during non-pandemic
years (prior to 2020).

For example, Figure 1 shows a comparison of the D, between New York and Florida during
the years 2014-2020. As with all state-wise comparisons, New York and Florida have
remarkably similar temporal variations in D, from week to week and from year to year, yet also
have a clear and nearly constant offset.

We correct for this offset by computing a factor Hg,., Which is the median value of the ratio of a
state’s D,.,, and the D, of a reference state from January 1, 2014 through December 31, 2020.
We chose New York as a reference state for computing Hg.. This choice of reference state is
arbitrary, but the large population of New York means that, in most cases, the error in Hg is
dominated by Poisson errors in the D,,, of the state of interest.

In the example shown in Figure 1, the health-status correction factor of Florida is Hge = 0.537,
indicating that New York experienced 53.7% fewer D, than Florida in the years 2014 to 2020,
likely owing in part to the older population in Florida. For each state-wise comparison of D,,, we
adopt this ratio as a correction factor to bring the pair of states onto the same scale, allowing for
a health-status-corrected comparison of mortality during the pandemic period.

This health-status correction factor is justified since we are performing a differential comparison
between states with and without lockdowns. We are asking, “Following the enactment of
lockdown measures, what is the fractional difference between the adjusted per capita ACM in


https://ballotpedia.org/States_that_did_not_issue_stay-at-home_orders_in_response_to_the_coronavirus_(COVID-19)_pandemic,_2020
https://www.cdc.gov/mmwr/volumes/69/wr/mm6935a2.htm
https://gis.cdc.gov/grasp/fluview/mortality.html
https://www.census.gov/data/tables/time-series/demo/popest/2020s-state-total.html#par_textimage_1574439295
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each pair of states?” This assumes that after removing differences in the health status of the
populations of neighboring states, the largest effect on the adjusted per capita ACM was the
enactment of a lockdown. This assumption is justified given that the lockdowns are expected to
result in massive disruptions to national and regional economies, healthcare systems, and
general social fabric.
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Figure 1: The deaths per capita, per week (D,.,) in Florida (red) and New York (blue). The
left-hand panel shows the offset in D,.,, which we attribute to differences in each state’s
population health status (age structure, poverty level, obesity rate, etc.). The panel on the
right shows the corrected D,.,, which allows for a differential comparison between these two
states from 2020 onward.

To quantify the effect of lockdowns on mortality during the COVID period we calculate the
integrated (total) health-status-corrected deaths per capita, D,,, over a chosen time period. We
then compute the ratio of D, for each pair of states, denoted by R (lockdown divided by
non-lockdown). We use three different time periods over which we expect D, and R, to capture
the effects of the lockdown measures:

Dyot1: Sum over lockdown period of the lockdown state.

Dyt2: Sum over the period of “COVID peak 1” (cp1) as identified by Rancourt et al. (2021; week
11 through week 25 of 2020)

Diot3: Sum over entire period from March 11, 2020 to December 31, 2021

We estimate the uncertainties of these ratios by propagating Poisson errors in each total
(uncorrected) ACM over each time period. Thus, these estimated uncertainties are the
calculated errors arising from counting statistics. We expect that there are no other significant
sources of error, given the integrity of the ACM data for the United States.

Throughout this paper we report the 95% confidence intervals for our integrated,
population-normalized and health-status-corrected mortality ratios for each pair-wise
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comparison of lockdown and non-lockdown states, and for the health-status-corrected
integrated per capita mortalities that we report.

Figure 2 illustrates the results of our ACM analysis in three panels for the example of Louisiana
(lockdown state) compared to Arkansas (non-lockdown state). The date of the WHO pandemic
announcement is shown in all panels with a vertical dashed line.

The first panel shows the health-status-corrected ACM per week, per 10,000 residents for
Louisiana. The “COVID peak 1” (cp1) 15-week time period is shown as a blue shaded region,
and for Louisiana covers a significant spike in the ACM, which also appears in the ACM per
week of the entire US (Rancourt et al., 2021). The lockdown period for Louisiana is shown as a
pink shaded region, and for this example the lockdown period is somewhat shorter than the cp1
time span.

The second panel shows the health-status-corrected ACM per week, per 10,000 residents for
Arkansas (blue line), which we designate as a non-lockdown state. For ease of comparison, the
ACM per week, per capita for Louisiana is also shown (gray line).

The final panel shows the weekly difference of the health-status-corrected per capita ACM in the
lockdown state minus the health-status-corrected per capita ACM in the non-lockdown state.
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Figure 2: Left - The deaths per week in Louisiana, a lockdown state, corrected for the
difference in population health status between Louisiana and Arkansas (blue line). The
dashed line shows the date of the WHO pandemic announcement. The blue shaded region
corresponds to the “COVID peak 1” (cp1) time period. The orange shaded region shows the
time period of Louisiana’s lockdown. Middle - The same as the left panel, but for the
non-lockdown state, Arkansas. The gray line is the deaths per week for Louisiana, for ease of
comparison. Right - The weekly differences of the deaths per week in Louisiana as compared
to Arkansas. The shaded regions are the same as in the left-hand panel.

Results

Our results are summarized in the figures below.
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In Figures 3, 4, and 5, the y-axis lists all 38 lockdown/non-lockdown pairs of states used for
comparing mortality outcomes, with the lockdown state listed first, followed by the non-lockdown
state. The blue dots show the point-estimate of the ratio, R, and the associated error bars show
the 95% confidence interval; the vertical dashed line marks unity. Values to the left of the vertical
line indicate instances in which the lockdown state experienced fewer health-status-corrected
per capita deaths than the non-lockdown state. Values to the right of the line indicate that the
lockdown state experienced more health-status-corrected per capita deaths than the
non-lockdown state.
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Figure 3: The health-status adjusted per capita ACM ratio (R) for each neighboring pair of
states listed on the y-axis. The ratio is based on summing all deaths in each state over the
time period corresponding to the COVID peak (3/11/2020 - 6/24/2020). The error bars show
the 95% confidence interval for each pair’s ratio. Ratios to the left of the vertical line indicate
that fewer deaths occurred in the lockdown state than in the non-lockdown state, while ratios
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to the right of the vertical line indicate that states with lockdowns experienced more deaths.
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Figure 4: The health-status adjusted per capita ACM ratio (R) for each neighboring pair of
states listed on the y-axis. The ratio is based on summing all deaths in each state over the
time period corresponding to the lockdown state’s lockdown duration. The error bars show the
95% confidence interval for each pair’s ratio. Ratios to the left of the vertical line indicate that
fewer deaths occurred in the lockdown state than in the non-lockdown state, while ratios to
the right of the vertical line indicate that states with lockdowns experienced more deaths.
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Figure 5: The health-status adjusted per capita ACM ratio (R) for each neighboring pair of
states listed on the y-axis. The ratio is based on summing all deaths in each state over the full
“COVID Era” in our data set (March 11, 2020 - Jan 25, 2022). The error bars show the 95%
confidence interval for each pair’s ratio. Ratios to the left of the vertical line indicate that fewer
deaths occurred in the lockdown state than in the non-lockdown state, while ratios to the right
of the vertical line indicate that states with lockdowns experienced more deaths.
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If lockdowns saved lives, then we would expect that most of the ACM ratios (R) would be less
than one. Instead, we see the opposite. For all three integration periods, the majority of ratios
are larger than one. For the cp1 (lockdown, full) period, 28 (28, 21) pairs have ACM ratios (R)
larger than one, while 0 (0, 9) pairs have ratios less than one, and the remaining 10 (10, 8) pairs
have R indistinguishable from unity at 95% confidence.

Thus, our analysis of R values for three time periods during which lockdowns are expected to
have an effect shows that the ACM data from the past two years is inconsistent with the
hypothesis that lockdowns saved lives. On the other hand, our results are consistent with the
conclusion of Rancourt et al. (2021) that the excess deaths in the COVID period in the USA are
caused by the government and medical measures, and responses to the declared pandemic.

Figure 6 shows the health-status-corrected integrated deaths per capita for the 15-week
“COVID peak 1” period (cp1; weeks 11 through 25 of 2020) for all the states individually (red)
and for the same 15-week integration window in 2019 (blue) and 2018 (green). Here, the states
are ordered, top to bottom, in decreasing order of average state-wise population density, which
is often presumed to be a factor in the spread of a contagious disease. The state names in
magenta correspond to our ten non-lockdown states having lockdown stringency scores of 0 or
1. The state names in cyan are the lockdown states that share a border with a non-lockdown
states, which we used in our calculation of R.

The values of health-status-corrected integrated all-cause mortality in the 15-week “cp1” periods
of 2019 and 2018 are tightly constrained for all states to a value of approximately 14 deaths per
10,000 (Figure 6), whereas the corresponding values in the COVID period are widely different
from state to state, ranging from the 2019 baseline value to as high as 25 per 10,000 for New
Jersey, and being typically as large as 15 to 21 per 10,000. Non-lockdown states have names
on the y-axis colored magenta, while the lockdown states used as our comparands in
calculating R are colored cyan.

Figure 6 shows that most of our ten non-lockdown states have health-status-corrected
integrated all-cause mortality in the 15-week cp1 on the pre-COVID (2018 and 2019) baseline
value of approximately 14 per 10,000, whereas most of the states with lockdown stringency
scores of 2 and 3 have mortality rates well above the pre-COVID baseline values.
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Figure 6: Integrated health-status corrected ACM over the cp1 period (March 11-June 29
2020; red) compared to the same time period in 2019 (blue) and 2018 (green). States ordered
from top to bottom in decreasing population density. Magenta indicates non-lockdown states
while cyan denotes lockdown states that share a border with non-lockdown states.
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Figure 7: Integrated health-status corrected ACM over the full COVID period (March 11, 2020
- December 31, 2021; red) compared to the same time period starting in 2018 (blue) and 2016
(green). States ordered from top to bottom in decreasing population density. Magenta
indicates non-lockdown states while cyan denotes lockdown states that share a border with
non-lockdown states.
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While a precise estimation of the excess mortality due to lockdowns is beyond the scope of this
paper, we can make a rough estimate based on Figure 6. The three most populous states
(California, Texas, Florida) have above-baseline COVID-period increases of approximately 1 per
10,000. On the basis of one calendar year (52 weeks), and for a population equal to that of the
entire USA, this would correspond to approximately 110,000 deaths, which could be attributed
directly to the impacts of ordering lockdowns and which would not have occurred if lockdowns
had not been implemented. This value is consistent with the lockdown excess mortality estimate
of 97K/year by Mulligan & Arnot (2022).

Figure 7 shows a calculation analogous to that employed in Figure 6, but for the entire COVID
period covered by our dataset (March 11, 2020 through December 31, 2021), rather than solely
for the time-window of cp1. On this time-integration period, we no longer distinguish a state-wise
differential effect from the lockdowns, which were relatively short and occured at the beginning
of the COVID period. What is apparent, instead, is the large all-cause mortality in all states in
the COVID period, and the large state-to-state differences in integrated COVID-period mortality.
It appears that the specific state-wise lockdowns considered in this article, while having large
and well-recognized effects at times near the lockdown periods, have relatively small or
undiscerned effects compared to all the COVID-period and state-wise heterogeneous changes
that caused excess deaths on the entire COVID period.

The largest modification we made to the ACM data is the health-status correction factor, Hge.
For each comparison pair we examined ACM ratio, R, and Hy,.. As shown in Figure 8, there is
no correlation between R and H,. for both the lockdown and non-lockdown state in each
comparison pair.


https://www.nber.org/system/files/working_papers/w30104/w30104.pdf
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Figure 8: Integrated health-status corrected ACM ratio (R) versus health-status correction
factor H for the lockdown state (blue) and non-lockdown state (orange) in each comparison
pair.

Discussion and Conclusion

The use of lockdowns to “quarantine” the general population of the United States in order to
control the spread of an infectious disease is without precedent in the nation’s history. During
previous pandemics, only the sick and infirm were quarantined while the rest of the population
continued more or less as normal.

This “targeted protection” approach was recommended by medical professionals in the Great
Barrington Declaration in 2020, demonstrating that alternatives to lockdowns existed and were
well understood within the medical community. As recently as 2019 the World Health
Organization advocated a similar approach in its recommendations for mitigating the risks of an
influenza pandemic while making no mention of lockdown measures for the general population
(WHO 2019). Indeed, the WHO report specifically states that quarantining exposed individuals
is “not recommended because there is no obvious rationale for this measure” (see their Tables 1
and 4). Similarly, the Influenza pandemic preparedness action plan for the United States makes
no mention of lockdowns and states that “...classical measures designed to reduce the risk of
introduction and transmission of some infectious agents, such as clinical screening and
quarantine at ports of entry, are not likely to be effective” (Strikas et al. 2002).



https://gbdeclaration.org/
https://gbdeclaration.org/
https://web.archive.org/web/20200721165231/https://apps.who.int/iris/bitstream/handle/10665/329438/9789241516839-eng.pdf
https://pubmed.ncbi.nlm.nih.gov/12173135/
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In their review of the available literature on influenza pandemic interventions, Inglesby et al.
(2006) explicitly recommend against quarantine measures in the event of an influenza
pandemic, for both sick and healthy individuals, because the societal costs are expected to far
outweigh the benefits. They concluded, “[E]xperience has shown that communities faced with
epidemics or other adverse events respond best and with the least anxiety when the normal
social functioning of the community is least disrupted.” These recommendations extend beyond
preparing for and responding to influenza pandemics. In a report titled Preparedness for a
High-Impact Respiratory Pathogen Pandemic, the authors conclude that quarantine is among
the least effective non-pharmaceutical measures in containing disease spread (Johns Hopkins
Center for Health Security 2019).

Thus, the lockdown measures implemented in 2020 by the majority of US states, as well as
many countries worldwide, represented an unprecedented, large-scale experiment in infectious
disease control. The all-cause mortality data we have analyzed allows us to test the hypothesis
that lockdowns saved lives during the COVID pandemic. We find that these data are
inconsistent with this hypothesis; states with lockdowns experienced more all-cause deaths than
neighboring states without lockdowns. We therefore conclude that this experiment was a failure
of public health policy and that lockdown measures should not be used during future disease
outbreaks.

Our finding that all-cause mortality increased in states with lockdowns is consistent with the
conclusions of Agrawal et al. (2021) who found statistically significant increases in excess
mortality due to shelter-in-place orders in the US and in 43 countries. Similarly, Mulligan & Arnot
(2022) estimate that there were 97K/year excess deaths due to lockdowns, with excess
mortality distributed equally among all adult age groups, unlike COVID deaths which were most
commonly attributed among the elderly.

Given the strong association between general-population lockdown impositions and increased
all-cause mortality, demonstrated above (Figures 3-6), it is appropriate to venture hypotheses
for the cause or causes of this association.

Obviously, privileged Americans, from the upper-middle and professional classes, did not die
from staying at home. However, it is not unreasonable to postulate that the general-population
lockdown regulations and orders are nonetheless proxies or statutory indicators of the degree of
aggressiveness (including abandonment) with which the societal institutions in the state
responded or reacted to the announced pandemic. These institutions would include schools,
care homes, hospitals, clinics, disability services, day care facilities, police services, family and
social services, and so on.

We tentatively advance this because it is entirely likely that the excess deaths associated with
lockdowns are from pools of individuals at particularly high risk of suffering fatal consequences
from large and negative disruptions in their lives and support networks. This will be true
irrespective of the actual mechanistic cause of death, given the known association between
both experienced stress and social isolation and disease severity and mortality, via the impact


https://pubmed.ncbi.nlm.nih.gov/17238820/
https://pubmed.ncbi.nlm.nih.gov/17238820/
https://www.centerforhealthsecurity.org/our-work/pubs_archive/pubs-pdfs/2019/190918-GMPBreport-respiratorypathogen.pdf
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https://www.nber.org/system/files/working_papers/w28930/w28930.pdf
https://www.nber.org/system/files/working_papers/w30104/w30104.pdf
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on the immune system (Ader and Cohen 1993; Cohen et al. 1991; Cohen et al. 1997; Cohen et
al. 2007; Sapolsky 2005; Prenderville et al., 2015; Dhabhar 2014; Rancourt et al. 2021). Indeed,
there is ample evidence that the lockdowns are associated with large increases in
unemployment and a general worsening of mental health (e.g. Jewell et al. 2020, Czeisler et al.
2020).

The ACM data available through the CDC Wonder website is not disaggregated by both state
and demographics, so we were not able to examine which demographic groups were dying, and
how they were dying, in each state. However, demographic information is available on a
national level, and Mulligan & Arnot (2022) found large increases in excess mortality among
people ages 18-65 years which is a demographic that was not at high risk from COVID.

Similarly, Rancourt et al. (2021) found that the temporal and spatial distribution of all-cause
mortality in the pandemic period is inconsistent with the effects of a viral respiratory disease.
They found evidence that many excess deaths during the pandemic were misdiagnosed
bacterial pneumonia infections, likely exacerbated by disruptions to the US healthcare system.
Thus, there exists strong evidence supporting the hypothesis that lockdowns placed a sudden
and severe stress burden on vulnerable demographics in the US, leading to significant
increases in death in those states that used lockdowns as disease control measures.
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In this study of the Vaccine Adverse Event Reporting System data (VAERS data, USA)
for COVID-19 vaccines we examine the broad features of the data, resolved by:

e major adverse effect (AE) category (death, life-threatening reaction,

hospitalization, disability, and all categories),

e vaccine manufacturer (Janssen, Moderna, Pfizer),

e type of injection (shot number in primary series, booster),

e date of injection,

e date of onset or finality of AE, and

e age of the person suffering the AE;
compared to the dates of administration of all the injections, for the different
manufacturers and types of injections (see Figure S1), and compared to population

characteristics (age structure, poverty, life expectancy, obesity).

We elucidate fundamental aspects of the body’s response to these kinds of pulses of
toxic charges, related to age-dependent immune efficiency and age-dependent spread
of vulnerability, and we identify exponential time decay components in the induced
mortalities, with half-life values in the range 13-30 days, possibly arising from the spike

protein.

A next version of this report will contain more content, detail, and supplementary
materials. Supporting figures illustrating the data and analyses are provided at the end

of this report.
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We make the following observations and conclusions.

-> The priority targeting of the population “most at risk” at the start of the COVID-19
vaccination campaign had disastrous consequences for that population, with

disproportionately large vaccine-induced mortality and AEs (Figure S2).

-> Graphs of AE frequency versus time of onset or finality of the AE in days since
injection all show the same time structure (for all resolved AEs and resolved injection
characteristics):

e alarge initial peak in the first 5 days or less, which is larger and sharper for the
MRNA multi-dose injections (Moderna, Pfizer) compared to the virus-vector
single-dose injection (Janssen),

e an exponential decay, from ~5 days to ~60 days, with a fitted half-life decay time
typically falling in the range 13-30 days, with this same behaviour occurring for all
three manufacturers and for all the main categories of AEs, and

e a plateau or “second wave” of AEs at long times, beyond ~60 days and up to
~350 days since injection, which largely consists of AEs having associations with

COVID-19 itself. (Figures S3 through S5)

-> Furthermore, the large initial peak in the first 5 days or less (x <5 days) is
significantly smaller for a first dose than for a second or third dose, for both Pfizer and
Moderna, while the half-life for the exponential part (5 days < x < 60 days) is

concomitantly larger for the later doses (Figure S5).
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-> The observed exponential decay implies a causal link between death (or AE) and
injection, up to ~60 days. Accidental deaths would have a uniform (constant) distribution
versus time since injection (versus “x”), mathematically corresponding to an infinite

decay time.

-> Itis reasonable to postulate that the 13-30 day half-life corresponds to the half-life in
the body of a toxic component present in or produced by the vaccines, such as the
spike protein; and that the initial peak (< 5 days) is due to a toxic component or adjuvant

mostly present in the mRNA injections, such as the cationic lipids.

-> Itis also reasonable to postulate that there is an enhanced immune response against
the vaccine component that causes the initial (x < 5 days) peak of deaths, in the later
doses compared to a first dose (Figure S5). If the initial immune response partially
debilitates mRNA delivery to cells and organs in the body, then spike-protein cumulative
toxicity leading to death could be delayed, with relatively less deaths in the exponential
decay phase (5 days < x < 60 days) and longer decay half-lives, for doses in addition to

a first dose, as observed (Figure S5).

-> Thus, it would appear that the enhanced initial (< 5 days) immune response partially
disables spike protein production and spread, which, in theory, would make the vaccine

both less toxic and less effective (if it ever is effective) in doses and boosters beyond
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the first dose. In fact, we do observe reductions of overall toxicity with increasing doses

and boosters, as per Table 1.

Pfizer Moderna Janssen
first 8.08 (0.48) 15.08 (0.82) 20.4 (2.2)
second 5.76 (0.44) 10.37 (0.75) -
primary  7.03 (0.33) 12.96 (0.56) 20.4 (2.2)
booster  3.20 (0.58) 3.18 (0.66) 3.8(3.8)
all 7.77 (0.32) 13.38 (0.53) 26.7 (2.5)
12to 17 0.60 (0.42) - -
18to 64 2.64 (0.37) 3.47 (0.52) 10.6 (1.7)
65 plus 19.7 (1.9) 25.5(2.1) 79. (12.)

Table 1. Total number of VAERS deaths divided by total number of
doses delivered in the same period (2021) to the same group (all values
and errors x 10°), by dose series and by age group. The age-group
rows show, for Pfizer and Moderna (Janssen) the total number of deaths

following the second (first) dose divided by the total number of

administered second (first) doses. Estimated 2o errors in parentheses:
two times the square-root of the number of deaths divided by the
number of doses.

- We produce graphs of toxicity (number of AEs / number of doses) by vaccination
date or by AE date (not shown), using the independent-database administered dose
data, which demonstrate strong correlations of toxicity with median age of those injected
on the vaccination or AE dates, and which show a gradation of manufacturer-specific

age-accounted toxicity (and see Table 1):

Janssen > Moderna > Pfizer,

approximately in the ratio (deaths per dose)

Janssen : Moderna : Pfizer=4:1.3:1
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-> We find that the number of deaths per administered dose (e.g., < 60 days since
injection) increases exponentially with age, with doubling time ~9-10 years, which is
approximately the known doubling time (in lived years) of the mortality rate for adults in
the general population of the USA. We interpret this to mean that the same age-
dependent repair/immune efficiency is in play defending against the assault of the
injection as is active protecting against the usual array of environmental and internal
assaults that cause death in adults (see discussion below about batches, and Figure

S6).

-> We find that the VAERS deaths by 5-year age groups (per general-population of
each USA age group) vary exponentially, again, with a doubling time approximately
equal to the known doubling time for risk of death per time (per year) for adults in the
general population of the USA. This supports our hypothesis that survival from the
assault of the vaccine is determined by the same age-dependent limiting kinetics of the
protective repair/immune mechanisms that ensure survival of adults subjected to the

current array of dominant life-expectancy-limiting challenges in the USA.

-> We find no evidence that supports the hypothesis of “toxic batches” (batch-to-batch

heterogeneity in lethality). The vaccine itself, as designed, is toxic.

= In looking for “toxic batches”, we instead found natural distributions of age-dependent

vulnerability to assault, as follows. Graphs of number of VAERS deaths by batch versus
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median age of those who died (per batch) have an upper threshold given by the usual
exponential (doubling time ~ 9-10 years), and a breadth of distribution of values that
also increases exponentially with age, with approximately the same doubling time
(Figure S6). We postulate that this behaviour arises from the natural age-dependent
spread of vulnerably to assault, not from batch heterogeneity. Indeed, essentially the
same behaviour (exponential increase in spread of sub-sample mortality with age, and
similar doubling time) is displayed if we make such plots on the basis of the state
jurisdictions or on the basis of vaccination date, rather than on the basis of the batch

number (not shown).
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Supporting figures are as follows.

Figure S1. Daily number of doses administered of the Pfizer (blue), Moderna (orange), and
Janssen (green) products throughout 2021. Data is from Centers for Disease Control and
Prevention (2022). Administered doses show a strong weekly cycle, with fewer doses
administered on Sundays. The large dip occurring in December 2021 is due to an artifact
present in the CDC data. Details will be given elsewhere. Note: The doses in a primary series,
and boosters are also resolved in the data (not shown).
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Figure S2. Number of adverse effects (AEs) of different types (hospitalization, disabled, life-
threatening, death, all-AEs, as indicated) per day versus date of vaccination, for different age
groups (80+, 60-79, 40-59, 0-39 years, as indicated). Grey curve shows number of doses
administered per vaccination date (right y-axes).
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Figure S3. Histograms showing the share of VAERS deaths occurring x days after vaccination.
(a) shows the full distribution, and its inset shows the same data but zoomed-in on the y-axis.
(b) shows the same data but zoomed-in on the x-axis.
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Figure S4. Histograms showing the share of VAERS deaths occurring x days after vaccination,
for each manufacturer separately. y-axes are linear on the top row and logarithmic on the
bottom row. In the plots in the left column (a and c), deaths at all x values are included in the
calculation (but the plots are truncated for better visualization), whereas in the right column (b
and d), only deaths for which x < 60 were used. The y-axis in (a) was also truncated for better

visualization. Note: The exponential fit (d) gives a half-life equal to 14 days, as indicated.
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Figure S5. Histograms showing the share of VAERS deaths occurring x days after vaccination,
for each manufacturer separately: Pfizer (P) (top row), Moderna (M) (middle row), Janssen (J)
(bottom row). The left-most column is for the first dose in a primary series; the second column is
for the second dose; and the right-most column is for a third dose. Data for x < 60 days is used.
The mean time to death and the total deaths in the graph are as indicated. The exponential fits
(red lines) have the following half-life value estimates: 16 days (P1), 25 days (P2), 30 days (P3);
13 days (M1), 21 days (M2), 14 days (M3); 18 days (J1).
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Figure S6. Number of VAERS deaths by batch for the 200 top batches versus median age of
those who died (per batch): Linear Y-scale (left), log Y-scale (right). Symbol size is scaled to
time (in days) since 11 December 2020.
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Abstract

We investigate why the USA, unlike Canada and Western European countries, has a
sustained exceedingly large mortality in the “COVID-era” occurring from March 2020 to
present (October 2021). All-cause mortality by time is the most reliable data for
detecting true catastrophic events causing death, and for gauging the population-level
impact of any surge in deaths from any cause. The behaviour of the USA all-cause
mortality by time (week, year), by age group, by sex, and by state is contrary to
pandemic behaviour caused by a new respiratory disease virus for which there is no
prior natural immunity in the population. Its seasonal structure (summer maxima), age-
group distribution (young residents), and large state-wise heterogeneity are
unprecedented and are opposite to viral respiratory disease behaviour, pandemic or
not. We conclude that a pandemic did not occur. We infer that persistent chronic
psychological stress induced by the long-lasting government-imposed societal and
economic transformations during the COVID-era converted the existing societal
(poverty), public-health (obesity) and hot-climate risk factors into deadly agents, largely
acting together, with devastating population-level consequences against large pools of
vulnerable and disadvantaged residents of the USA, far above preexisting pre-COVID-
era mortality in those pools. We also find a large COVID-era USA pneumonia epidemic
that is not mentioned in the media or significantly in the scientific literature, which was
not adequately addressed. Many COVID-19-assigned deaths may be misdiagnosed
bacterial pneumonia deaths. The massive vaccination campaign (380 M administered
doses, 178 M fully vaccinated individuals, mainly January-August 2021 and March-
August 2021, respectively) had no detectable mitigating effect, and may have
contributed to making the younger population more vulnerable (35-64 years, summer-
2021 mortality).
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Summary

We studied all-cause mortality (ACM) by time (week, year) 2013-2021 for the USA,
resolved by state, or by age group, in relation to several socio-geo-economic and
climatic variables (poverty, obesity, climatic temperature, population density,
geographical region, and summer heatwaves).

We calculate “excess” mortality, by calendar-year or (summer to summer) cycle-year or
selected ranges of weeks, as the week-by-week ACM above a summer baseline (SB)
ACM, which has a monotonic and linear variation on the decadal timescale, 2013-2019,
extrapolated into 2021.

Unlike Canada and Western European countries, the USA has a dramatic anomalous
increase in both ACM by year and “excess” ACM by year in 2020 and 2021, which
started immediately following the World Health Organization (WHO) 11 March 2020
declaration of a pandemic. Nothing of this magnitude occurs in other nations. The
USA'’s yearly mortality in 2020-2021 is equal to (2020) and greater than (2021) the
mortality by year occurring in its domestic population just after the Second World War.

Regarding geo-temporal variations in ACM by week (ACM/w) and in excess (above-SB)
ACM by week (ACM-SB/w), we find that there are two distinct periods: the “COVID-era”
(March 2020 to present), and the “pre-COVID-era” (prior to March 2020). Normal
epidemiological variations occur in the pre-COVID-era, as has been observed for more
than a century, in all mid-latitude Northern hemisphere jurisdictions having reliable data;
whereas there is unprecedented state-wise jurisdictional and regional geographical
heterogeneity in ACM by time in the COVID-era, which is contrary to theoretical
pandemic behaviour caused by a new virus for which there is no prior natural immunity

in the population.

COVID-era time-integrated seasonal and yearly features of ACM-SB/w significantly
correlate with poverty (PV), obesity (OB), and climatic temperature (Tav), by state; and
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differ by age group. The correlations account for the state-to-state heterogeneity, with
notable outliers in one feature (March-June 2020) of the ACM-SB/w; and such
correlations do not occur in pre-COVID-era cycle-year excess mortality. The co-
associations of excess deaths with PV, OB and Tav occur only in the COVID-era. We
show that normal (pre-COVID) excess (winter season) deaths — largely attributed to
viral respiratory diseases occurring in the elderly — occur irrespective of PV, OB and
climate, and that there is solely a correlation to age structure of the population in the
state.

An example of a co-correlation is the relation between the summer-2020 excess
mortality normalized by population (smpl/pop) and the product of OB and PV (OB.PV),
state-by-state (see article for details):
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A similar large excess of deaths occurred in the summer 2021, which is also strongly
co-correlated with poverty, obesity and regional climate. In addition, we showed that
these 2020 and 2021 summer mortalities and massive fall-winter-2020-2021 mortality,
unlike with viral respiratory disease deaths, occur in younger people, over broad age
categories.

In the correlations that we identified, the 2020 and 2021 summer excess (above-SB)

mortalities extend to zero values for sufficiently small values of poverty, obesity or
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summer temperatures, or their combinations, such as the product of poverty and

obesity.

We also found, for example, that the onset of the COVID-era is associated with an
increase in deaths of 15-34 year olds to a new plateau in ACM/w (approximately 400

more deaths per week), which does not return to normal over the period studied.

The behaviour of all-cause mortality in the COVID-era is irreconcilable with a pandemic

caused by a new virus for which there is no prior natural immunity in the population.

On the contrary, we concluded that the COVID-era deaths are of two types:

e A large narrow peak (in ACM/w) occurring immediately after the WHO
declaration of a pandemic apparently caused by the aggressive novel
government and medical responses that were applied in certain specific state
jurisdictions, against sick elderly populations (34 states do not significantly exhibit
this feature).

e Summer-2020, fall-winter-2020-2021, and summer-2021 peaks and excesses (in
ACM/w), which co-correlate with poverty, obesity and regional climate,
presumably caused by chronic psychological stress induced by the government
and medical responses, which massively disrupted lives and society, and

affected broad age groups, as young as 15 year olds.

Therefore, a pandemic did not occur; but an unprecedented systemic aggression
against large pools of vulnerable and disadvantaged residents of the USA did occur. We
interpret that the persistent chronic psychologica